On Routing Instability and End-to-End Path Failures

Nick Feamster

M.I.T. Computer Science and AI Laboratory

David Andersen, Hari Balakrishnan, Frans Kaashoek, M.I.T. Feng Wang, Lixin Gao, UMass Amherst

Understanding End-to-End Path Failures

- 1. Where do end-to-end path failures appear?
- 2. How long do they last?
- 3. How do they correlate with BGP instability?
- 4. How much can path failures be explained by routing?

Data Collection: RON Testbed (~ 30 Hosts)

- Active Probes: Detect path failures.
 Pairwise probing; logging detects one-way loss.
- Failure: 2 consecutive lost probes
- **Traceroutes:** Study path IP-level path properties.
 - Periodic
 - Failure-triggered

BGP Feeds: Detect interdomain routing instability.

Co-located at 8 measurement hosts

How long do end-to-end path failures last?

Routing not responsible for most packet loss

From September 2004 to October 2004:

All Path Failures:

Failure Type	Number	Lost Packets	Fraction
Routing Loops	162	$4,\!991$	0.0092
Loop-Free Dynamics	246	$24,\!160$	0.0445
Other (e.g., congestion)	$331,\!742$	$513,\!862$	0.9463

Failures longer than 30 seconds:

Failure Type	Number	Lost Packets	Fraction
Routing Loops	108	$4,\!862$	0.0278
Loop-Free Dynamics	150	$23,\!958$	0.1372
Other (e.g., congestion)	$5,\!105$	$145,\!804$	0.8350

Routing dynamics-induced failures last longer

Relating Path Failures and BGP messages

• *Technique 1:* Cross-correlation of time-based signals

 Technique 2: Consider a failure and look for BGP (and vice versa)

Do failures correlate with routing instability?

Failures typically occur several minutes before BGP activity.

Which failures correlate with instability?

- Failures that appear near end hosts are less likely to coincide with BGP instability.
 - 60% of failures that appeared at least three hops from an end host coincided with at least one BGP message.
 - 22% of failures within one hop of an end host coincided with at least one BGP message.
 - Reachability to an ISP does not imply reachability to customers.
 - These failures are may also be caused by congestion.

Routing dynamics affect independent paths

Surprise: BGP messages precede failures!

Route flap damping, maintenance, misconfiguration, etc.

Can BGP help predict failures?

Effectiveness of predictor depends on path characteristics.

Summary

• Location

- Some links experience many path failures, but many experience some failures.
- Failures appear more often inside ASes than between them.
- Congestion-related failures affect more destinations.

Duration

- 90% of failures last less than 15 minutes
- 70% of failures last less than 5 minutes
- Failures caused by routing dynamics last longer

Correlation

- BGP messages coincide with only half of the failures that reactive routing could potentially avoid.
- When BGP messages and failures coincide, BGP messages most often follow failures by 4 minutes.
- BGP sometimes precedes failures.

Failures and delay fluctuations

