

From Traffic Measurement to Realistic Workload Generation

Felix Hernandez-Campos

Ph. D. CandidateDept. of Computer ScienceUniv. of North Carolina at Chapel Hill

Joint work with

F. Donelson Smith and Kevin Jeffay

WISP November 12, 2004

- Evaluating network protocols and mechanisms requires careful experimentation
- A critical element of these experiments is the traffic workload
 - What is a *realistic* workload?
- Given a packet header trace T, extract a set of features that describes the traffic, and regenerate this traffic accordingly, collecting a new trace T^*
 - What kind of analysis will demonstrate that *T* and *T*^{*} are *close enough*?

- Make generated traffic look like UNC edge link
 - Evaluate accuracy and impact of available bandwidth estimation techniques
 - Evaluate performance and impact of high-speed TCP flavors

Open-loop

-Large number of sophisticated models

» Packet-level modeling

-But TCP is a closed-loop protocol

» Open-loop traffic generation breaks reliability, flow control, and congestion control

Closed-loop

- -The idea is to simulate the behavior of users/applications
 - » Source-level modeling

» T = f(S) and $T^* = g(S) =>$ study S, f and g

- We call pairs of ADUs that carry a request/response exchange an *epoch*
- *Quiet times* are also part of the workload of TCP

Client-Server Applications SMTP and NNTP Examples

- Abstract source-level model for describing the workload of TCP connections
- Each connection is summarized using a *connection vector* of the form $C_i = (e_1, e_2, ..., e_n)$ with $n \ge 1$ epochs
 - Each epoch has the form $e_j = (a_j, ta_j, b_j, tb_j)$
- Connection vectors can be extracted from TCP segment header traces
 - Sequence number directionality, timing analysis, write size and packet size interactions
 - $-O(n \log n) + O(n^*W)$

Beyond the Client-Server Model Icecast – Internet Radio

Audio Frames

- Server PUSH applications do not follow the traditional client-server model
- The sequential a-b-t model is still applicable – Make a_i and tb_i zero

Beyond the Client-Server Model NNTP in Stream-Mode and BitTorrent

- Some connections are said to exhibit *data exchange concurrency*
- Two reasons:
 - Increasing performance
 - Enabling natural concurrency
- Concurrent a-b-t model describes each side of the connection separately
 - $((a_1, ta_1), (a_2, ta_2), \dots, (a_n, ta_n))$ $((b_1, tb_1), (b_2, tb_2), \dots, (b_m, tb_m))$
- Concurrency can be detected with high probability
 - -p.seqno > q.ackno and q.seqno > p.ackno
 - $-O(n^*W)$

Abilene-l

UNC 2004 Aug 3 1-2 PM

- New method for modeling traffic mixes
 - Empirically-derived connection vectors
 - Studied sequential vs. concurrent dichotomy
 - Fully automated, efficient analysis
- New traffic generation approach
 - Enables comparison of real and synthetic traffic
 - Implemented a distributed traffic generator
 - Techniques for scaling traffic load
- Deconstructing traffic and causality
- Traffic classification