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Streaming Data

Bill Szewczyk describes streaming data as satisfying the following:
B QOrder of the data is uncontroled. It isn’t necessarily in time order.
® The data generally aren’t stored, but collected in “real time”.
® There is insufficient storage to store the data.
B Processing time is bounded by acquisition time.
B The data are (extremely) nonstationary.
| would add

B The data are complex. Often multivariate, mixed continuous and
discrete, etc.

Network data satisfy all of these conditions. Trade-offs must be made
between computational/model complexity and speed.
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Streaming Internet Data

A few tasks one might perform on streaming data:
B Model packet interarrival times.
® Models for data transfers, session sizes, etc.

B Passive fingerprinting (used as a check for compliance with
accreditation or to detect crafted packets).

B Statistics on backscatter packets to monitor the denial of service
attacks on the Internet (Moore et al).

® Model server flows to detect Trojans, Worms, misuse, and to
assess network utilization (Brodley and Early).

® Model flows in VPN'’s to assess “information leak” (Wright).
® Worm/virus activity models.

® Model user behavior (web browsing, etc). Detect interest shifts.
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Statistics on Streaming Data

What is needed is methods for estimating statistics on streaming data.
Traditional Statistics starts with X = {z4, ..., z,} and computes:

B Sample mean, variance: X = £ " z;, 6% = 1= 3" (z; — X)2.

® Parametric probability density: f(x;é) = f(x;é(xl, ey )

® Nonparametric PDF: histogram, kernel estimator:

flo) = & X K (552).

With streaming data we see each observation as it arrives.
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Recursive Algorithms

We can compute the mean (and higher moments) recursively:

Xy

1 < — —
_in = Xp1+ 1 (xn _Xn—l) .
nizl n

There are multivariate extensions to these, and various simplifying for-

mulations. For streaming data, there is no n.
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Exponential Windows

® We could use a sliding window, retaining the newest n points, and
update/downdate each observations as it enters/leaves the
window.

® Or we can apply an exponentially weighted window:

- ~ 1 ~
X = X4 1+ N (l“t — Xt—l) :

Or, more generally

Xi=X; 1+ <5L’t — Xt—l) = (1-60)X;_1 + 0y,

for0 <6 < 1.
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Nonparametric Density Estimation

What about density estimation? Note that the histogram is just an
average, so can be put in the above framework.
The kernel estimator:

. 1 < .
fn(x)—nhnZ;K(xhnx).

K is usually taken to be normal (Gaussian) density. The kernel
estimator can be computed recursively at a preselected z:

There are various other variations, as well as methods for adjusting h,,

recursively.
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Kernel Estimator Picture
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Semiparametric Density Estimation

The kernel estimator and the normal density are extremes of a general
approach called mixture modeling.

flz) = mif (w;0:)

(think of f(x;#;) as being the normal density). This model is fit with an
iterative algorithm, which can also be computed recursively, and thus
modified as above.

A recursive algorithm called Adaptive Mixtures can be used to choose

m (this tends to overfit).

e
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Combining Kernels and Mixtures

The filtered kernel estimator combines these two ideas to allow
different bandwidths in different regions:
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Combining Kernels and Mixtures

A streaming data version of the FKE is:

e . 1 — —
1 (@) = 01*(a ZTHlK( tfll),

95

where we can update the mixture using adaptive mixtures.

Note: We can use the adaptive mixtures estimate to select the “optimal”

bandwidth A..
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Visualization

® Waterfall plots: plot a variable each time step, shifting the plot in
time (up/down or left/right).

® |n general, simple is better: | like scatter plots.
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Source Ports
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Backscatter Structure

Spoofed IP

10000 20000 30000 40000 50000 60000

0

Time (hours)

KBeH

Statistical and Visualization Techniques for Streaming Data — p.15/31



More Backscatter Structure
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Correlation: Data Transfer vs Number Packets
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Correlation: Packet Size vs Number Packets

w
i
S
W
o
e |
&
)
> ¢
3 |
& ¥
]
« Emall {slope=960)
« Telnet (slope=85)
8
-
bl
™
=
E _
I I I I I
0 2000 4000 6000 8000
Num.Packets

Statistical and Visualization Techniques for Streaming Data — p.18/31



Packet Size

Visualization of Densities
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Visualization of Densities
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Dynamic Sensing

The Conditionality Principle states (essentially) that inference
should be made conditional on the experiment run (the current
situation).

Corollary: What you collect should depend on what you have
collected (and what inferences you have made).

Trivial Example: Backscatter packets are (a subset) of those that
were not requested as a part of a legitimate session. Only collect
packets (SYN/ACK, RST) if the destination IP is not in a session

with the source. Similiarly for scans and probes.

More generally, what you collect may depend on system load,
situation assessment (attack or not), or many other ancillary
statistics.
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Integrated Sensing and Processing

You want to determine what to collect next based on the situation.
One way to acheive this is through ISP Decision Trees.

Set up: you want to build a classifier that takes input and
produces a class label (eg: attack, benign). There are many
things you could measure off a packet, the more information you
extract, the longer it takes to process it.

The idea of ISPDT is to group data (cluster) according to
measurements (independently of class) and use the groups to
determine the next measurement to take.
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ISPDT Example

Example
(from Priebe et al., PAMI *04)
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Network Data

m Some of this is obvious. You will collect different statistics for
different:

B protocols
B gpplications
B packet types
® You will also collect different information depending on the
B purpose you wish to accomplish
B the load on the network (sensor, analysis station)
B whether you think you are under attack
B memory/storage constraints.

= |SPDT is merely a framework within which to think about these
iIssues and expand them to things you haven’t considered.
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Toy Example

Distinguish between Web and Email sessions using:
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Cluster On Data Bytes
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ISPDT

Cluster on log(Data Bytes + 1):
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ISPDT Results

Classifier 1: 1-nearest neighbor.
ISPDT: In cluster 1, 1-nearest neighbor, in cluster 2, only compute
Data Pakets/Packet and use linear classifier.

Classifier Error
1-NN 17.7%
ISPDT 13.5%
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