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The need for sound statistical methods

The richness of traffic is such that one is always in need of more powerful data gathering and

processing infrastructures on the one hand, and statistical analysis methods on the other. For

existing estimation techniques, the most urgent requirement is increasing their robustness to

nonstationarities of various types , which will always be present, despite the luxury of huge data

sets which allow apparently stationary subsets to be selected. Closely related to this is the need for

formal hypothesis tests to more rigorously select between competing conclusions, and closely

related in turn is the need for reliable confidence intervals to be computable, computed, and used

intelligently

”Self-Similar Traffic and Network Dynamics”, by Erramili, Roughan, Veitch, Willinger (Proc. IEEE

2002)
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OUTLINE OF THE TALK

• Today, I will survey methods to detect and assess large time scaling (definition to come)...

• I will not spend time to explain why large time scaling is important and what are the plausible

models explaining large time scaling properties (read the excellent survey paper mentioned in

the first slide !)

• As you might know, the statisticians already comme too few and too late... (like the US cavalry)

! I hope the issue is still of some importance to some of you !!!
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• Introduction

• Fourier Methods

• Wavelet Methods

• Pros and Cons and conclusion
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FRACTIONAL MODELS

• A covariance stationary process {Xt} is said to be fractional if its spectral density is given

f(x) = |1− eix|−2df∗(x), d < 1/2

where f∗ is continuous at zero frequency.

• Allowing d to take non integer values produces a fundamental change in the correlation

structure of the process as compared to the correlation structure of a standard times series...

The covariance coefficients decay hyperbolically

ρ(τ) := Cov(Xτ , X0) = O(τ−1+2d) as τ →∞.
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SEMI-PARAMETRIC ESTIMATION

• In the semi-parametric setting (SPS), a full parametric model is not specified for the ”smooth

part” of the spectral density f∗: f∗ is considered as an infinite dimensional nuisance

parameter .

• Two distinct approaches:

1. Local-to-zero methods : estimators that estimate d and f∗(0) and which are consistent

without any restrictions on f∗ away from zero, apart from integrability on [−π,+π].

2. global methods : estimators that jointly estimate d and f∗ over the whole frequency range,

and which are consistent over classes of functions implying ”global” regularity conditions.
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OUTLINE OF THE TALK

• The Semi-parametric setting

• Fourier Methods

• Wavelet Methods

• Pros and Cons and conclusion
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PERIODOGRAM AT FOURIER FREQUENCIES

• The oldest and most natural tool for spectral estimation is the periodogram (100 years Before

Internet !)

• Given an observation X1, · · · , Xn, the ordinary discrete Fourier transform (DFT) and the

periodogram are respectively defined as

dXn (x) = (2πn)−1/2
n∑
t=1

Xteitx,

IXn (x) = |dXn (x)|2 = (2πn)−1

∣∣∣∣∣
n∑
t=1

Xteitx

∣∣∣∣∣
2

.
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PERIODOGRAM AT FOURIER FREQUENCIES

Under miscellaneous weak dependence conditions ,

• the periodogram is an asymptotically unbiased estimate of the spectral density, i.e.

E[IXn (xk)] = f(xk) +O(n−1), 1 ≤ k ≤ ñ,

where the O(n−1) term is uniform in k,

• the periodogram ordinates are asymptotically uncorrelated,

var(IXn (xk)) = f(xk)2 +O(n−1)

cov(IXn (xk), IXn (xl)) = O(n−1), k 6= l

where the O(n−1) term is uniform w.r.t k, l,
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THE PERIODOGRAM OF A FRACTIONAL PROCESS: BAD NEWS

• For LRD processes (0 < d < 1/2), none of the above mentioned properties remains valid

(Künsch (1986), Hurvich and Beltrao (1993)) !

• The bias is not vanishingly small: for any given k ∈ {1, · · · , [(n− 1)/2],

lim
n→∞

E[IXn (xk)]/f(xk) 6= 1 ,

• The periodogram coordinates are not asymptotically uncorrelated, for any given k, j,

1 ≤ k < j ≤ [(n− 1)/2]

lim
n→∞

|cov
(
IXn (xk)/f(xk) , IXn (xj)/f(xj)

)
| 6= 0.
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THE PERIODOGRAM OF A FRACTIONAL PROCESS: GOOD
NEWS

• Nevertheless, the bias is vanishingly small for frequencies sufficiently far away from zero.

|E[In(xk)/f(xk)]− 1| ≤ Ck−1

• The normalized periodogram ordinates are asymptotically uncorrelated

|cov (In(xk)/f(xk) , In(xj)/f(xj)) | ≤ Ck−2d(j − k)2d−1, k < j
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THE GEWEKE PORTER-HUDAK (GPH) ESTIMATOR

• In the neighborhood of the zero frequency, f(x) ≈ |1− eix|−2df∗(0). Therefore,

log f(x) ≈ dg(x) + log f∗(0) g(x) = −2 log |1− eix|

• Writing log IXn (xk) = log f(xk) + log IXn (xk)/f(xk) and plugging the expression above,

log IXn (xk) = dg(xk) + c+
(
log IXn (xk)/f(xk)− γ

)
• This suggests to estimate d as the regression coef. associated to g !

(d̂GPH(M), ĉGPH(M)) = arg min
d̄,c̄

M∑
k=1

(log(IXn (xk))− d̄g(xk)− c̄)2,
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GPH estimator for a FARIMA(1,d,0) process, (I −B)d(1− φB)X = Z , φ = 0.9. Blue line:

log-periodogram. Green Line: least square fit of the intercept.



WISP- 2004 - E. Moulines 14/46-1

THE LOCAL WHITTLE ESTIMATOR (LWE)

• Assume that (dn,1, . . . , dn,M ) are independent zero-mean complex gaussian random

variables satisfying

E|dn,k|2 = sn,k , Ed2
n,k = 0 .

• The negated log-likelihood of (dn,1, . . . , dn,M ) is

M∑
i=1

log(sn,k) +
|dn,k|2

sn,k

• Idea: approximate the log-likelihood of (dXn (x1), . . . , dXn (xM )) by

−
M∑
i=1

log(f(xk)) +
IXn (xk)
f(xk)

Of course, this is not quite true (see the comments above) but we may nevertheless expect that

this approximation yields to sensible estimates.
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THE LOCAL WHITTLE ESTIMATOR

The Local Whittle Estimator (LWE) is defined as the minimum of

(d̂GSE
M , ĈM ) = argmind̄,C̄M

−1
M∑
k=1

{
log(C̄|1− eixk |−2d̄) +

IXn (xk)
C̄|1− eixj |−2d̄

}
where M is a bandwidth parameter.

• Contrary to GPH, there is no closed form solution...

• however, the problem can be solved for C for any given d, yielding a profile quasi-likelihood

which depends only on a single parameter d... this is not a tough optimization problem !!
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FEXP ESTIMATOR

• Principle Estimate d and the coefficients of a truncated expansion of log f∗ on the cosine

basis.

• Define h0 = 1/
√

2π and hj(x) = cos(jx)/
√
π, j ≥ 1. The log-periodogram regression

estimator of d is defined by

(d̂FEXP(q), θ̂0, · · · , θ̂q) =

arg min
d̄,θ̄0,··· ,θ̄q

K∑
k=1

(
log(IXn (xk))− d̄g(xk)−

q∑
j=0

θ̄jhj(xk)
)2

,

• the choice of the bandwidth parameter M is replaced here by the choice of the truncation

index q.
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ASYMPTOTIC NORMALITY : GPH / GSE estimator

• (Loc1) There exist a real d < 1/2, a square summable sequence {ψj} and a zero-mean

unit variance white noise {Zt}t∈Z such that

Xt = (I −B)−dYt, and Yt =
∞∑

k=−∞

ψkZt−k .

We denote ψ̂(x) the Fourier transform of {ψk} and f∗ = |ψ̂|2.

• (Loc2) 1/L ≤ f∗(0) ≤ L and |f∗(x)− f∗(0)| ≤ L|x|β , for x ∈ [0,∆] and some

L > 0.

• (Loc3) The bandwidth M = Mn is a non-decreasing function of n (the sample size) which

verifies

lim
n→∞

(M−1
n +Mnn

− 2β
1+2β ) = 0.
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ASYMPTOTIC NORMALITY : GPH / GSE estimator

Assume (Loc1-3)

• If Z is a martingale increment sequence + conditions then√
Mn(d̂GSE(Mn)− d) →d N (0, 1/4).

• If Z is Gaussian or Z is i.i.d. and satisfies moments + Cramer’s condition (non-lattice)√
Mn(d̂GPH(Mn)− d) →d N (0, π2/24)
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ASYMPTOTIC NORMALITY : GPH / GSE estimator

• There is a loss is asymptotic efficiency due to the use of the log-periodogram:

this loss can be partially corrected by pooling the periodogram ordinates.

• The maximal rate of convergence is n2/5 (β = 2) no matter how smooth the spectral density

is in the neighborhood of zero frequency: can be corrected by using a

local polynomial regression (Phillips and co-authors)

• Because of the ”log”, stronger assumptions on the noise are required for the GPH !

• Bad news ... nothing is known for non-linear processes, such as those currently used in traffic

analysis... for linear processes, establishing such results proved to be extremely involved, and it

would presumably require a tremendous effort to carry this analysis for ”complex” non linear

models.
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• Glob1 X is a Gaussian process with spectral density f(x) = |1− eix|−2df∗(x), where

−1/2 < d < 1/2 and the function x→ l∗(x) is continuous. The Fourier coefficients

θj(l∗) := (2π)−1

∫ π

−π
l∗(x) cos(jx)dx

are absolutely summable.

• Glob2 |xf∗(x)− yf∗(y)| ≤ L|x− y|,

• Glob3 q := qn is a non-decreasing sequence of integers such that

lim
n→∞

(q−1
n + qn log5(n)n−1) = 0, and lim

n→∞

√
n/qn

∞∑
k=qn

|θj(l∗)| = 0.

√
n/qn(d̂FEXP(m, qn)− d) →d N (0,mψ′(m))

Quasi-parametric rate of convergence can be achieved for analytic function |θj | ≤ Ce−βj , for

some β > 0. In such case one may set qn = log(n)/(2β) and the rate of convergence is√
n/ log(n).
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Conclusion - Global vs Local methods

• The FEXP estimator performs ”uniformly well” over a class that contain ”all” the FARIMA

processes with roots inside a disk {|z| ≥ eγ},

• The bound explodes as as γ → 0... means that some poles of the short-memory part get

close to the unit circle !

• Results extend to general function class, including Sobolev classes, quasi-analytic class, class

of entire functions...

• For smooth functions global methods should be preferred to local methods... but

local methods do not require much
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TRENDS, NONSTATIONARITY

• Instead of working directly on the data, it might be worthwhile to work on theM -th difference of

the process. Denoting {Yt} the observations, define the M -th difference process as

Xt = ∆M (B)Yk, where ∆(B) = I −B .

• Because we differentiate, working with {Xt} presents some distinctive advantages:

(i) we are insensitive to polynomial trends (of order M ) in the observations (and approximately

insensitive to ”smooth” trends in the mean)

(ii) we can deal with process which are genuinely non-stationary but whose increments are

stationary (of importance in econometrics and quantitative finance, where unit-root

processes abound).

• When we work on the increments, some care should be taken and the plain Fourier analysis

will not work, due to frequency leakage !
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FREQUENCY-DOMAIN LEAKAGE
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TAPERING

• A solution to control leakage is to taper the observed data prior to computing the DFT.

• The tapered DFT and periodogram are defined as

dXh,n(x) := (2π
n∑
t=1

|ht,n|2)−1/2
n∑
t=1

ht,nXteitx and IXh,n(x) := |dXh,n(x)|2.

where {ht,n} is a (real or complex) taper function.

• There a zillions of papers on tapers... I usually used the Hurvich ∗ and Chen (2000) tapers,

which generalizes Hanning windows...

ht,n =
(
1− e2iπt/n

)p
because p gives an explicit control on the rate of decay of the taper in the tails.

• Using p = M (the taper order = the differentiation order) it is possible to retrieve all the results

obtained above (Hurvich, Moulines and Soulier,2002).

∗a student of J. Tukey
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FREQUENCY-DOMAIN LEAKAGE
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TRENDS, NONSTATIONARITY
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Top plot: WGN + additive trend. Middle plot: WGN. Bottom Plot: FARIMA(1,d,0).
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DIFFERENTIATION AND TAPERING
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GSE estimator: WGN + additive trend
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”WAVELET” ANALYSIS

• A ”wavelet” analysis is based on a pair of functions (φ, ψ), the so called father and mother

wavelets.

• Our key assumptions are

(i) The ”father” wavelet ψ has M vanishing moments, i.e.
∫
tlψ(t) dt = 0 for all

l = 0, . . . ,M − 1, or equivalently, ψ̂(ξ) = O(|ξ|M ) in the neighborhood of the zero

frequency

(ii) The ”mother” wavelet φ is such that t→
∑
k∈Z k

lφ(· − k) is a polynomial of degree l for

all l = 0, . . . ,M − 1.
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MULTIRESOLUTION

• These assumptions are automatically fulfilled when the functions (φ, ψ) are define a

multiresolution analysis. Recall that, in this case, ψj,k(t) = 2−j/2 ψ(2−jt− k) is an

orthonormal basis of L2(R).

• In fact, for all what follow, it is not required that (φ, ψ) define a multi-resolution analysis: there

is thus more flexibility in the choice of these functions !

• Nevertheless, classical compactly supported wavelets (like Daubechies) are usually good

candidates.
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WAVELET COEFFICIENTS

• The computation of the wavelet coefficients of a sequence x = {xk, k ∈ Z} is (conceptually)

in two steps

(i) interpolation using the father wavelet

xn(t) :=
n∑
k=1

xk φ(t− k) and x(t) :=
∑
k∈Z

xk φ(t− k).

(ii) definition of the (details) wavelet coefficients

dj,k :=
∫

x(t)ψj,k(t) dt (j, k) ∈ Λ.

• In practice, the sequence dj
def= {dj,k} is computed by convolving the sequence {xk} with a

FIR filter Fj = {Fj,l} and downsampling, i.e. dj,k = [Fj ? x] ↓ 2j where

Fj,l := 2−j/2
∫
φ(t+ l)ψ(2−jt) dt.

• Because the wavelets are compactly supported, there is no need to do ”nasty” tricks to handle

end effects.
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ASSUMPTIONS

(i) The k-th difference Xt = ∆kYt of the process {Yt} is covariance stationary with spectral

density f(x) = |1− eix|−2df∗(x), with |d| < 1/2.

(ii) |f∗(λ)− f∗(0)| ≤ Lλ−β with β ∈ (0, 2]

(iii) The number M of vanishing moments of ψ is larger than k.

• Since {Xt} is covariance stationary, then at any given scale j, the WC sequence

dj = {dj,k}k∈Z is a covariance stationary process.

• The wavelet coefficients process is also stationary across scales (by properly stacking the

wavelet coefficients to account for downsampling).
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VARIANCE WAVELET COEFFICIENTS

• The variance of the wavelet coefficient grows σ2(d, f∗(0))× 22jd; more precisely, for j ≥ 0,∣∣∣∣var
(

dj,k
σ2(d, f∗(0)) 22jd

)
− 1
∣∣∣∣ ≤ C 2−βj ,

where σ2(d, f∗(0)) = f∗(0)Kφ,ψ(d), with d 7→ Kψ,φ(d) a known function depending

only on (ψ, φ).

• If {Yt} is exactly self-similar (FBM) and if the CWT (no sampling) is used, then:

var
(

dj,k

σ2(d,f∗(0)) 22jd

)
= 1 over all scales ! In particular, there is no bias term !

• It is interesting to note that the bias is exactly controlled by the behavior of the smooth part of

the spectral density at zero frequency
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COVARIANCE OF WAVELET COEFFICIENTS

• for any scale j ≥ 0, the spectral density D(λ; f, j) of {dj,k}k∈Z is bounded ! The wavelet

filters transform LRD into SRD !

• In addition, this spectral density may be approximated, up to the scale factor f∗(0) by a

spectral density depending only on d (but otherwise not on f∗).∣∣∣∣ D(λ; f, j)
f∗(0)Dφ,ψ(λ; d) 22jd

− 1
∣∣∣∣ ≤ C 2−βj ,

where

Dφ,ψ(λ; d) := |φ̂(0)|2
∑
l∈Z

|λ+ 2lπ|−2d |ψ̂(λ+ 2lπ)|2.

Note that ψ̂ being null at zero, all the terms in this sum are bounded. Since the objective is to

get wavelet coefficients which are approximately a white noise, this function should be (ideally)

flat !

• Expressions of this type were known for the CWT of the FBM (which is exactly self-similar)...

the striking result is that valid under much weaker assumptions.
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VARIANCE WAVELET COEFFICIENTS

• The logged variance Vj = var (dj,k) is given by

log2(Vj) ≈ d(2j) + log2(σ
2(d, f∗(0))) as j →∞,

which suggests a linear regression approach to estimate d. The slope of the regression

estimates d and the intercept is related to σ2(d, f∗(0)).

• In practice, var (dj,k) is not known but estimating this quantity is easy. The empirical variance

of the WC at scale j

V̂j =
1
Nj

Nj∑
k=1

d2
j,k

is a sensible candidate, because the wavelet filter kills the LRD (the theory is however harder

than it might seem ! see (Bardet et al, 1999).
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THE ABRY-VEITCH ESTIMATOR

• Because var
(
V̂j

)
depends on the scale j it is wise to perform a weighted regression, which

yields to the popular Abry-Veitch (1999) estimator which soon becomes a standard in the

network community.

• The resulting estimator is very similar to the GPH estimator... the bandwidth selection problem

is here replaced by scale selection !

• Not much is known on the limiting behavior of the estimator: consistency and asymptotic

normality has been obtained by Bardet (2000) for the FGN. Consistency and rates are given for

the CWT in (Bardet, Lang, Moulines, Soulier, 2000)
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WAVELET LOCAL WHITTLE ESTIMATOR

• The (negated) log-likelihood of an array {cj,k} of centered independent gaussian random

variables with variance σ2
j,j is ∑

(j,k)∈∆

(
c2j,k/σ

2
j,k + log(σ2

j,k)
)
.

• If we identify {cj,k, (j, k) ∈ ∆} with the wavelet coefficients {dXj,k, (j, k) ∈ ∆} and put

σ2
j,k = σ222jd, we get a proxy for the likelihood of the WC, provided that {Xk} is a fractional

process of index d. Exploits that

(i) {dXj,k} is approximately Gaussian (well supported by numerical evidence showing)

(ii) {dXj,k are approximately uncorrelated (depends on the choice of (φ, ψ) but is also achieved

with a reasonable accuracy)

• This suggests to estimate (d, σ2) by minimizing

(σ2, d) →
[log2(n)]∑
j=J

(
d2
j,k

σ222jd
+ log(σ2 22jd)

)
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WAVELET LOCAL WHITTLE ESTIMATOR

• The k-th difference Xt = ∆kYt of the process {Yt} is covariance stationary with spectral

density f(x) = |1− eix|−2df∗(x), with |d| < 1/2.

• |f∗(λ)− f∗(0)| ≤ Lλ−β with β ∈ (0, 2]

• The number M of vanishing moments of ψ is larger than k.

• The lower scale J scale indices satisfy:

2J

n
+
n1/(1+2β)

2J
→ 0

(n2−J)1/2(d̂J − d0) → N (0, σ2(d0)) .

We thus obtain (not surprisingly) the same rate of convergence than Fourier methods.
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Selected Topics

• Level II asymptotics: minimax Lower bound, minimax rate optimality

• Adaptations, bandwidth selection
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MINIMAX LOWER BOUNDS : LOCAL-TO-ZEROS METHODS

Let δ,∆ > 0, α ∈ (0, π], β > 0 and µ ≥ 1. There exists a constant c > 0 such that,

lim inf
n

inf
d̂n

sup
−∆≤d≤δ

sup
f∗∈F∗(α,β,µ)

Pd,f∗
(
nβ/(2β+1)|d̂n − d| ≥ c

)
> 0,

where

• the infimum inf d̂n
is taken over all possible estimators d based on {X1, · · · , Xn} of a

covariance stationary process {Xt}t∈Z with spectral density f = edgf∗.

• F∗(α, β, µ) is the set of functions f∗ verifying∫ π

−π
f∗(x)dx ≤ µ, 1/µ ≤ f∗(0) ≤ µ, |φ(x)−φ(0)| ≤ µ|x|β ,∀|x| ≤ α.

The GPH / LWE estimators are rate optimal
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MINIMAX LOWER BOUNDS: GLOBAL METHODS

After Iouditski, Moulines, Soulier (2001), Let β > 0, γ > 0, L > 0, and δ < 1/2. Then

lim inf
n

inf
d̂n

sup
−δ≤d≤δ

sup
log(f∗)∈S(β,L)

n
2β

2β+1 Ed,f∗ [(d̂n − d)2] > 0,

lim inf
n

inf
d̂n

sup
−δ≤d≤δ

sup
log(f∗)∈A(β,L)

n log−1(n)Ed,f∗ [(d̂n − d)2] ≥ 1/2β,

where the infimum inf d̂n
is taken over all possible estimators of d based on {X1, · · · , Xn} of a

covariance stationary process {Xt}t∈Z with spectral density f = edgf∗. Here S(β, L) and

A(β, L) are defined as the subsets of L2([−π, π], dx) verifying, ∀q ≥ 0

φ ∈ S(β, L) ⇒
∞∑
j=q

|φ̂j | ≤ L(1 + q)−β ,

φ ∈ A(β, L) ⇒
∞∑
j=q

|φ̂j | ≤ Le−βq,

where φ̂j :=
∫
φ(x) cos(jx)dx.
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THE FEXP ESTIMATOR IS RATE OPTIMAL

Theorem 1 (Hurvich, Moulines, Soulier, 2001) Let β > 0, γ > 0, L > 0, δ < 1/2. Define

qn(β, L) = [L1/βn1/(2β+1)] and qn(β) = [log(n)/2β].

lim sup
n

sup
|d|≤δ

sup
{log(f∗)∈S(β,L)}

n
2β

1+2β Ed,f∗ [(d̂FEXP(m, qn(β, L))− d)2] ≤ L
1
βmψ′(m),

lim
n→∞

sup
|d|≤δ

sup
log(f∗)∈A(β,L)

n log−1(n)Ed,f∗ [(d̂FEXP(m, qn(γ))− d)2] = mψ′(m)/2β,

where Ed,f∗ denotes the expectation with respect to the distribution of a Gaussian process with

spectral density edgf∗.

• The lower bound is sharp (up to a multiplicative constant between which is less than 2) in the

analytic class.

• The restriction to Gaussian processes can be relaxed at the expense of some additional

technicalities
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Pros and Cons

• Fourier and Wavelets achieve the same rate of convergence (in the situations for which we are

able to carry out such analysis !)... yet the asymptotic variance for the wavelet estimators is

messier than that of Fourier (depends on d, φ, ψ, etc).

• Under rather general assumptions, Fourier estimators are minimax rate optimal and the lower

bound is closed for being sharp !...

• Spectral analysis, when appropriately conducted, yields sensible results
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Pros and Cons

• Wavelet estimators have ”built-in” robustness to trends in the mean... However, robust Fourier

estimators can be obtained by differentiation and tapering.

• Wavelet is directly amenable to adaptive implementations. Fourier estimators can be ”adapted”

(e.g. by computing the Fourier transform over blocks and averaging the blocks... whereas such

estimators are presumably sensible, theory supporting such estimators is still lacking).

• Wavelet can reveal other features... and particular features that connect large scale with traffic

micro-structure - fractals, cascades, etc but here many issues are still open and even the

formulation of the problems is not clear cut...

• The theory of wavelet estimators is far less complete than the theory of Fourier estimators... in

particular, regressing the logscale is not the only game which can be played (wavelet crossing

trees, ”whittle” type estimates)
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