CAP representations (The right(?) way for generic MR analysis of Internet data)

Amos Ron

University of Wisconsin^{*} – Madison

WISP: UCSD, November 2004

*: Breaking news, 06/11/04: Wisconsin routed Minnesota 38:14, on its way to the national title.

Outline

- Possible goals behind "generic analysis on Internet signals"
- Why is that a non-trivial task?
- Predictability and pyramidal algorithms
- Performance of pyramidal representation
- CAMP and my favorite pyramidal representation
- What parameters to extract from the representation?

A mathematical view of Internet signals

- Main features in the signal:
 - burst types
 - rate of their appearances
- This is non-trivial
 - (why? After all, nothing is easier than 1D signals...)
 - the amount of data may be overwhelming
 - there is no clear way to judge success
- It is also a cultural problem. really?

maybe it is time to show some images?

Pyramidal algorithms I: MR representation

 $h: \mathbb{Z} \to \mathbb{R}$ is a symmetric, normalized, filter: $h(k) = h(-k), \sum_{k \in \mathbb{Z}} h(k) = 1.$

 $_{\downarrow},~\uparrow$ are downsampling & upsampling:

$$y_{\downarrow}(k) = y(2k), \quad k \in \mathbb{Z}$$

 $y_{\uparrow}(k) = \begin{cases} 2y(k/2), & k \text{ even,} \\ 0, & \text{otherwise.} \end{cases}$

$$(y_j)_{j=-\infty}^{\infty} \subset \mathbb{C}^{\mathbb{Z}}$$
 s.t:
 $y_j = Cy_{j+1} := (h * y_j)_{\downarrow}, \quad \forall j$

 ${\cal C}$ is Compression or Coarsification

 y_{j+1} is then **predicted** from y_j by

$$y_{j+1} \approx P y_j := h * (y_{j\uparrow}).$$

 ${\cal P}$ is Prediction or subdivision

Pyramidal algorithms II: the detail coefficients

• Define the detail coefficients:

$$d_j := (I - PC) y_j = y_j - P y_{j-1}$$

- Replace y_j by the pair (y_{j-1}, d_j) .
- Continue iteratively.

Reconstruction. Recovering y_m from $y_0, d_1, d_2, \ldots, d_m$ is trivial: $y_1 = d_1 + Py_0, y_2 = d_2 + Py_1$ and so on.

Wavelet pyramids, Mallat, 1987

Decompose the detail map I - PC:

I - PC = RD

 $D: y \mapsto (h_1 * y)_{\downarrow} =: w_{1,j-1}, \quad R: y \mapsto h_1 * y_{\uparrow}$

with h_1 a real, symmetric, highpass: $\sum_{k \in \mathbb{Z}} h_1(k) = 0$.

Note that we can recover y_m from $y_0, w_{1,0}, w_{1,1}, \dots, w_{1,m-1}$ since $y_1 = Rw_{1,0} + Py_0, y_2 = Rw_{1,1} + Py_1$ and so on.

Performance

- Ability to predict. The best prediction are based on local averaging, and on nothing else =spline predictors
- Time blurring: good prediction requires long averaging filter. That blurs spontaneous events.
- Internet data exhibit different behaviour at "small" scales than other scales. Hence: non-stationary representation
- Standard wavelet systems are mediocre for Internet data: they blur time, and create artifacts, in order to gain unnecessary properties (orthonormality).

Poor prediction

My favorite representation

well, before we conducted any numerical tests

Step I: Build an MR representation based on

$$h_1 = \frac{1}{4}(1\ 2\ 1)$$

Step II: Define the detail coefficients by:

$$d_j(k) = \begin{cases} \frac{-y_j(k+1) + 2y_j(k) - y_j(k-1)}{4}, & k \text{ even}, \\ \\ \frac{y_j(k-3) - 9y_j(k-1) + 16y_j(k) - 9y_j(k+1) - y_j(k+3)}{16}, & k \text{ odd}. \end{cases}$$

The "performance grade" here is 2 in the strict sense. (To compare, Haar's grade is 1 in the non-strict sense, and 0 in the strict sense.) This is an example of a new class of high-performance representations called CAMP what to analyse? what to extract?

for $p \ge 1$, the *p*-norm is

$$||a||_p = (\sum_k |a_k|^p)^{1/p}$$

the best thing to analyse is the "compressibility" of the detail coefficients: choose a number N, then

(1) replace the N "most important" detail coefficients by 0, to obtain a signal e_N .

- (2) reconstruct using e_N to obtain Y_N .
- (3) define $e_p(N) := ||Y_N||_p$.
- (4) find the a parameter α such that

$$e_p(N) \approx C N^{-\alpha}$$

 $\alpha(p)$ = the predictability parameter in the *p*-norm "most important"=?

(1) Non-linear: choose the largest ones

(2) Linear: go from coarse scale to fine scale.

Output: this way we have two functions $p \mapsto \alpha(p)$.

Goal: learn how to judge properties of your signal based on these two functions

it might be that the detail coefficients behave rather differently at different scale (small scale vs. large scale).

CAP representations

Choose:

- two refinable functions ϕ_c, ϕ_r with refinement filters h_c, h_r .
- A third (Auxiliary-Alignment) lowpass filter h_a .

Decompose: Fix $f : \mathbb{R} \to \mathbb{C}$. For all $k, j \in \mathbb{Z}$, define $y_j(k) := 2^{j/2} \langle f, (\phi_c)_{j,k} \rangle$. The CAP operators are:

 $C: y \mapsto (h_c * y)_{\downarrow},$ (Coarsification-Compression), $A: y \mapsto Ay := h_a * y,$ (Alignment), $P: y \mapsto Py := h_r * (y_{\uparrow}),$ (Prediction-subdivision). Then $Cy_{j+1} = y_j, \forall j.$ The detail coefficients are:

$$d_j := (A - PAC)y_j = Ay_j - PAy_{j-1}.$$

This is the **CAP representation** with (d_j) the **CAP coefficients**.

 y_m is recovered from $y_0, d_1, d_2, \ldots, d_m$ since $Ay_1 = d_1 + PAy_0, \quad Ay_2 = d_2 + PAy_1, \quad \ldots, \quad Ay_m = d_m + PAy_{m-1}$ and deconvolving A from Ay_m .

Summary

Do they

	W	F	CAP
implemented by fast pyramid algorithms ?	\checkmark	\checkmark	\checkmark
provides good function space characterizations ?	\checkmark	\checkmark	\checkmark
avoid mother wavelets ?			\checkmark
very short filters, with no artifacts ?		\checkmark	\checkmark
have simple constructions ?		\checkmark	\checkmark
avoid redundant representations ?	\checkmark		

Wavelet are non-redundant. Caplets are only slightly redundant in high dimensions. Their redundancy is non-essential.

CAMP representations: Compression-Alignment-Modified Prediction

With CAP in hand, one can modify the process s.t.:

- The filters are shorter
- The performance (:= function space characterization) is the same

Example: Assume h is interpolatory. Define the details as:

$$d_j := \begin{cases} y_j - h * y_j, & \text{on } 2\mathbb{Z}^d, \\ y_j - h * (y_{j\downarrow\uparrow}), & \text{otherwise.} \end{cases}$$

Let ϕ be the refinable function of h. If

$$\phi \in C_c^{s+\epsilon},$$

then the above detail characterize L_p^s .

Example (2D):
$$h = \begin{bmatrix} 0 & 1/8 & 1/8 \\ 1/8 & 1/4 & 1/8 \\ 1/8 & 1/8 & 0 \end{bmatrix}$$
.

There are four (hidden) filters, for computing d_j :

$\begin{bmatrix} 0 & -1 \end{bmatrix}$	/8 - 1	ך8/	Γ 0	0	0]
-1/8 +3	/4 -1	L/8 ,	-1/2	+1	-1/2
$\lfloor -1/8 -1$	/8	D]		0	0
[0 -1/2]	07		ΓΟ	0	-1/2]
0 +1	0,		0	+1	0
$\begin{bmatrix} 0 & -1/2 \end{bmatrix}$	0		$\lfloor -1/2$	0	0

Those are 7, 3, 3, 3-tap. There are four (hidden) "CAMPlets", whose average area of support is about 2. The performance is on par with tensor 3/5, whose filters are 25, 15, 15-tap. Each supported in 3×3 square.

Figure 1: First level \tilde{d} CAMP coefficients, organized by cosets.

Wisconsin

From left, 1st row:

Julia Velikina, Youngmi Hur, Yeon Kim, Narfi Stefansson.

2nd row:

Thomas Hangelbroek, Sangnam Nam, Jeff Kline, Steven Parker.

Julia Velikina: undersampled MRI data

Schepp-Logan phantom

Conventional recon. from 90 projections, acceptable quality

Conventional recon. from 23 projections, unacceptable quality

TV-based recon. from 23 projections

Jeff Kline: new data representation in NMR

Steven Parker: redundant representation of acoustic signals

Adpative framelet-based representation of a vibraphone recording

Narfi Stefansson: sparse framelet representations

FrameNet: on-line interactive framelet and wavelet analysis

Comments? Please mail <u>framenet@waveletidr.org</u>.

The IDR FrameNet Portal

Hide Control Panel	<u>Home > 1 Dimension > Analysis</u>						
<u>Home</u> <u>1 Dimension</u> <u>Analysis</u> Applications		1	Dimension Fr	amelet Analysis			
Data Options		Select Data (Group	Select Transf	forms Group		
<u>Transform Options</u> <u>2 Dimensions</u> <u>Collaborate</u> <u>Tour</u> <u>Site Help</u>		internet/Interne There are 15 signals	t 1 🗾	tight frames <u>There</u> are 4 syste	≝ ms in this group		
Welcome quest							
Login Logout			Select Initial Setting	gs for Visualization			
Preferences		Views: FreqLevel × Filter 💌	Data: framenet/internet	System: RS4			
			Start Visu	ualization	DEVise Target: 🛛 🗾		
		<u>.</u>					

Comments? Please mail <u>framenet@waveletidr.org</u>.

Ideal Data Representation	he ID	R Frame	Net Porta	al					
Hide Control Panel	<u>Home > 1</u>	Dimension > Data	<u>Options</u> > Manage	Data					Hel
<u>Home</u> <u>1 Dimension</u> <u>Analysis</u> Applications Data Options	Mar	1age Data	65 data are show	wn					
<u>Transform Options</u> <u>2 Dimensions</u> <u>Collaborate</u> <u>Tour</u> <u>Site Help</u>	Create selecto alias	Dreate Alias an alias to each ed item (data or s) in the table.	Copy Copy the data sour for each selected it (data or alias) in th table.	Rename Move purce Edit the metadata for Move each select l item each selected item (data item (data or alias) n the or alias) in the table. different collection		lected ias) to a ection.	Delete Delete each selected item (data or alias) in the table.		
Welcome, guest <u>Login</u> <u>Logout</u>	Show advanced search options								rch options
Preferences	select	collection	<u>var 1</u>	<u>var 2</u>	<u>var 3</u>	<u>var 4</u>	<u>var 5</u>		7.71
		framenet	internet	Internet I	09.30	out	bytes	Into	View
		framenet	internet	Internet I	09.30	out	flows	Into	View
		framenet	internet	Internet I	09.30	out	pKts	Into	<u>View</u>
		framenet	internet	Internet I	10.07	out	florm	Info	View
		framenet	internet	Internet I	10.07		nkte	Info	View
		framenet	internet	Internet I	10.07		hutes	Info	View
		framenet	internet	Internet I	10.14	out	flows	Info	View
		framenet	internet	Internet I	10.14	out	pkts	Info	View
		framenet	internet	Internet I	10.21	out	bytes	Info	View
		framenet	internet	Internet I	10.21	out	flows	Info	View
		framenet	internet	Internet I	10.21	out	pkts	Info	View
		framenet	internet	Internet I	10.28	out	bytes	Info	View