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INTERNET MAPS (1)
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INTERNET MAPS (2)
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INTERNET MAPS (3)
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originally shown by [FFF99]



THE PROBLEM

Topology must be inferred
* router links not directly observable

* links queried indirectly by paths

e [FFF99] data based on single-source traceroute



INHERENT BIAS

Lakhina et al., INFOCOM 2003
Traceroute sampling apparently biased

Distant edges less likely to be observed, and
nearby edges are over-represented

Power-law degree distributions can appear when
none exist...

.. even in Erd6s-Rényi random graphs!

Our first result confirms this analytically.



RANDOM GRAPHS

E-R random graphs
G(n,p = c/n)

e 71 vertices; each pair connected with probability p
* Degree distribution P (k) is Poisson with mean ¢

e For c > 1, O(n) vertices form a giant component.



SOME PERSPECTIVE

Random graphs are totally unrealistic models of
anything real

But, random structures are good null-models

If you think some property P is interesting but a
totally random graph also exhibits P, then maybe
not so interesting...

Many power laws have trivial explanations, e.g.,
exponential sampling and certain multiplicative
random processes



BACK TO TRACEROUTE
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BUILDING A SPANNING TREE
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sampled network topology (with errors)



BUILDING A SPANNING TREE

label all vertices UNKNOWN, label one PENDING
while there are PENDING vertices
choose® a PENDING vertex v
label v REACHED
for every UNKNOWN neighbor u of v
label ©w PENDING
add (u,v) to TREE
* e.g., depth-, breadth- or random-first



ANALYSIS

e Let S(T) be number of PENDING vertices at step T’
e Let U(T)be number of UNKNOWN vertices at step T'

* The expected differences at each step are

ElUT+1)-UT) | =-pU(T)

E[ S(T

s =

pU(T)



ANALYSIS

e Werescaleto t =T/n,u=U/n,s=5/n
to obtain

du ds
= —Cu — = el

= dt
with solutions

i e s(t) =1 " F= o

e Wormald’s theorem makes this rigorous; we can

predict S(T') and U (T) w.h.p. to within o(n).



ANALYSIS

e Ateach time ¢, degree of a PENDING vertex is
a Poisson distribution
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Poisson(m, k) =

with mean ™ = Cu(t)

* So, integrate this up to time ¢, at which point every
vertex in giant component is REACHED



ANALYSIS

e Thus, averaging over all vertices in TREE

i e
Plk+1) = —/ dt Poisson(cu(t), k)
0
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which is a power law with exponent o = —1
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THEORY & EXPERIMENT
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MORE GENERALLY

e Generalized process for random graphs with
arbitrary underlying degree distributions, e.g.,

e d-regular 2% power law!
e Poisson 2% power law
* power law °b% different power law

e Mathematical crank to get observed distribution

e [ -2 8

C., Moore, Kempe and Achlioptas, STOC 2005



IT GETS WORSE

e Suppose underlying graph has a power law
e What is observed exponent?

* Severity of bias depends on number of
redundant edges (the ones missed by traceroute)



Low EDGE-REDUNDANCY

excess =9 edges

courtesy of D. Alderson



IT GETS WORSE

e Suppose underlying graph has a power law
e What is observed exponent abs?

* Severity of bias depends on number of
redundant edges (the ones missed by traceroute)

* You pick any underlying exponent «,
* You pick observed exponent tps < &

* ] can pick mean degree <k> so that traceroute
gives you Qps from o



IT GETS WORSE
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AND WORSE STILL...

* QOkay, so just use more sources!
* Bias remains severe until we see almost all edges

e The marginal value of an additional source is low,
but positive!



AND WORSE STILL...
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CHALLENGES

Topological inferences from traceroute must
account for its bias (or be heavily caveated)

But, how to do this? Not yet clear... some ideas:

* Estimate real marginal value of new sources, for
many sources (DIMES?)

e Estimate mean degree (k)
e Use convergence rates to extrapolate

e Use model of hierarchical organization to
estimate the missing edges






