
The Bias of Traceroute : 
Accuracy & Scaling in 

Internet Mapping
Aaron Clauset

UNM Computer Science at
CAIDA WIT
11 May 2006

with Cristopher Moore
David Kempe, and
Dimitris Achlioptas



Internet Maps (1)



Internet Maps (2)



Internet Maps (3)

degree

fre
qu
en
cy

P (k) ∼ k
−α

2 < α < 3

routers

originally shown by [FFF99]



The Problem

Topology must be inferred

• router links not directly observable

• links queried indirectly by paths

• [FFF99] data based on single-source traceroute
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Inherent Bias

Lakhina et al., INFOCOM 2003

• Traceroute sampling apparently biased

• Distant edges less likely to be observed, and    
nearby edges are over-represented

• Power-law degree distributions can appear when 
none exist...

• ... even in Erdös-Rényi random graphs!

• Our first result confirms this analytically.



Random Graphs

E-R random graphs

•     vertices; each pair connected with probability

• Degree distribution             is Poisson with mean

• For            ,              vertices form a giant component.

G(n, p = c/n)
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Some Perspective

• Random graphs are totally unrealistic models of 
anything real

• But, random structures are good null-models

• If you think some property P is interesting but a 
totally random graph also exhibits P, then maybe 
not so interesting...

• Many power laws have trivial explanations, e.g., 
exponential sampling and certain multiplicative 
random processes



Back to Traceroute
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Building a Spanning Tree

1. choose root
2. add edges to
       unknown neighbors
       they become pending
3. repeat 2 for each 
       pending node;
       it becomes reached

sampled network topology (with errors)
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Building a Spanning Tree

label all vertices UNKNOWN, label one PENDING

while there are PENDING vertices

choose* a PENDING vertex

label      REACHED

for every UNKNOWN neighbor      of

label     PENDING

add            to TREE

* e.g., depth-, breadth- or random-first
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Analysis

• Let            be number of PENDING vertices at step 

• Let            be number of UNKNOWN vertices at step 

• The expected differences at each step are

U(T )

S(T ) T

T

E[ S(T + 1) − S(T ) ] = −1 + pU(T )

E[ U(T + 1) − U(T ) ] = −pU(T )



Analysis

• We rescale to                                                                   
to obtain

with solutions

• Wormald’s theorem makes this rigorous; we can 
predict           and            w.h.p. to within          .

t = T/n, u = U/n, s = S/n

du

dt
= −cu

ds

dt
= cu − 1

u(t) = e−ct
s(t) = 1 − t − e−ct

o(n)U(T )S(T )



Analysis

• At each time   , degree of a PENDING vertex is         
a Poisson distribution

with mean

• So, integrate this up to time     , at which point every 
vertex in giant component is REACHED

m = cu(t)

Poisson(m, k) =
e−mmk

k!

tf
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Analysis

• Thus, averaging over all vertices in TREE

which is a power law with exponent 

P (k + 1) =
1

tf

∫ tf

0

dt Poisson(cu(t), k)

α = −1

P (k + 1) = (1 − o(1))
Γ(k)

ck!
∼

1

ck



Theory & Experiment
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More Generally

• Generalized process for random graphs with 
arbitrary underlying degree distributions, e.g.,

• d-regular         power law!

• Poisson          power law

• power law         different power law

• Mathematical crank to get observed distribution

gobs(z) = z

∫ 1

0

dt g′
[

t −
(1 − z)

g′(1)
g′

(

g′(t)

g′(1)

)]

C., Moore, Kempe and Achlioptas, STOC 2005
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It Gets Worse

• Suppose underlying graph has a power law

• What is observed exponent?

• Severity of bias depends on number of      
redundant edges (the ones missed by traceroute)



Low Edge-Redundancy

courtesy of D. Alderson

excess = 9 edges



It Gets Worse

• Suppose underlying graph has a power law

• What is observed exponent          ?

• Severity of bias depends on number of      
redundant edges (the ones missed by traceroute)

• You pick any underlying exponent     ,

• You pick observed exponent

• I can pick mean degree       so that traceroute     
gives you           from 

α

〈k〉
αobs α

αobs < α

αobs



It Gets Worse
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And Worse Still...

• Okay, so just use more sources!

• Bias remains severe until we see almost all edges

• The marginal value of an additional source is low, 
but positive!



And Worse Still...
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Challenges

• Topological inferences from traceroute must 
account for its bias (or be heavily caveated)

• But, how to do this? Not yet clear... some ideas:

• Estimate real marginal value of new sources, for 
many sources (DIMES?)

• Estimate mean degree

• Use convergence rates to extrapolate

• Use model of hierarchical organization to  
estimate the missing edges

〈k〉
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