

#### Discovering Interdomain Prefix Propagation using Active Probing

#### Lorenzo Colitti

lorenzo@ripe.net - colitti@dia.uniroma3.it





#### The problem

Lorenzo Colitti

- 🥥

۹

# **Prefix propagation**

- Focus: an AS Z
- Z would like to know how the rest of the Internet treats its prefixes
- Motivations:
  - Predict the effect of network faults
  - Perform effective traffic engineering
  - Develop peering strategies
  - Evaluate QoS provided by upstreams

• For simplicity, we consider an arbitrary prefix p in Z

# **Per-prefix discovery**

Ξ

- Easy!
- Get paths from RIS and ORV, merge into a graph



### What about alternate paths?

- These are the paths used by the network to reach *p* when the discovery is performed
- But which paths **could** be used in other conditions?
  - Obviously many more
- For example, what would happen:
  - In case of network faults?
  - If we did inbound traffic engineering?

RIPE

мсс





### **Discovering AS adjacencies**

- Another approach:
  - Take all paths seen by RIS and ORV for all Internet prefixes
  - Merge into an interdomain graph
  - Examine portion of graph around Z

• We obtain a subset of the interdomain topology around Z at the time of exploration

RIPE

мсс

# But what about policies?

• BGP is not about routing, it's about policy

- We have the interconnections between AS
- But without policies, we know nothing!
  - Like having a city map without one-way streets

• The topology itself tells us nothing on which paths can be used to reach Z





• By manipulating BGP announcements for *p* we can force the network to use alternate paths

- We can then use per-prefix discovery methods
  - We reveal alternate paths
    - ... but only those that can be used to reach *p*

• This is what we wanted





#### **Methodology**

Lorenzo Colitti

- 🔶

۹





- An AS-path is **feasible** for *p* if "the routing policies of the Internet allow the announcement of *p* with that path "
  - Active paths
  - Backup paths
  - Alternate paths
- A peering between two ASes is feasible for *p* if it's part of an AS-path that is feasible per *p* 
  - i.e. if it's possible, in some state of the Internet, that traffic to *p* could flow through that peering

# Feasibility graph

• Directed graph, nodes = ASes, arcs = feasible peerings



• Shows us [a subset of] the portion of interdomain topology involved by traffic flows to *p* 





- Basic idea:
  - Send BGP announcements
  - Observe the results using RIS, ORV, looking glasses, etc.
- Two primitives
  - "Withdrawal observation"
    - Sends a withdrawal and observes convergence
      - BGP explores alternate paths
  - "AS-set stuffing"
    - Prohibits an announcement from being propagated by certain ASes by putting them in the path
      - Forces BGP to choose alternate paths

# Withdrawal Observation

- When a prefix is withdrawn, BGP explores alternate paths before concluding that it is unreachable
- So:
  - Withdraw p
  - Observe convergence process
  - Record all alternate paths chosen by BGP
  - Merge all paths into a feasibility graph
- Rapidly obtains a rich feasibility graph





- Normally used in route aggregation
- Indicates that information on who exactly originated a certain announcement was lost
- e.g.:
  - L'AS 701 has customers AS1, AS2, AS3
  - The three customers have contiguous address space
  - AS 701 can aggregate the three announcements in one

701 1 ]  
701 2 
$$\} \Rightarrow$$
 701 {1,2,3}  
701 3 ]





- If an AS receives an announcement with its own number in the path, it discards it to prevent routing loops
- We can stop an announcement from traversing a given AS by putting that AS in the path
  - If we use an AS-set, path length does not change
  - The announced paths end in ...  $Z \{A_1, ..., A_n\}$
- As far as p is concerned, it's as if the ASes A<sub>i</sub> had been eliminated from the topology
  - We name the ASes A<sub>i</sub> "prohibited"





#### **Applications**

Lorenzo Colitti

- 🔶

۹



- Withdrawal observation allows:
  - Topology discovery
    - Faster than AS-set stuffing
- AS-set stuffing allows:
  - Topology discovery
  - Path feasibility determination
  - Path preference comparison
  - Measuring performance in alternate routing states
    - What-if studies on Internet routing

# **Topology discovery**

- Objective: discover ASes and peerings not ordinarily visible
  - Simple algorithm using AS-set stuffing: "level-by-level exploration"
    - We name  $\ell$  ("level") of an AS the topological distance from Z
    - Start from Z with increasing values of  $\ell$ 
      - Prohibit all ASes at distance {
      - Merge all paths discovered into feasibility graph
    - If new ASes at distance *l* have appeared, prohibit them
    - Otherwise, proceed with level { + 1
  - Or just use withdrawal observation













### Path feasibility determination

• Route collector C sees path **ZFGC** 

• Is path **ZADC** feasible?

• Z announces {*B*,*F*,*G*}



- If C sees **ZADC**, **ZADC** is feasible
- If C does not see any path, **ZADC** is not feasible

RIPE

NCC

- 4



### Path preference determination

• C sees **ZFGC** 

RIPE

NCC

- **ZADC** and **ZBEC** are also feasible
- Which does C prefer?
- Z announces {*F*,*G*}



• C's best path is the path it prefers



### Measurements in altered routing states

- Routing changes made with AS-set stuffing are steady-state
- This enables "what-if" analysis of performance
- "How would performance change if we used ISP A instead of B?"
  - Use AS-set stuffing to change the topology
  - Then measure performance
    - Even ping could suffice
      - Outgoing path stays the same

RIPE





#### **Results**

Lorenzo Colitti

- 🥥

9



- We first tested our techniques on the IPv6 Internet
  - IPv6: Nov 2004 Feb 2005 (CASPUR)
  - IPv4: Jun 2004 Jul 2004 (RIPE NCC)
- Lessons learned:
  - Interdomain routing is a sensitive topic
  - Wear a flame-proof suit

# Topology discovery: results

- Both methods are significantly better than stable state routing
- The topologies produced by AS-set stuffing are slightly richer

| Method       | IPv6      |            | IPv4      |           |
|--------------|-----------|------------|-----------|-----------|
|              | AS        | Peering    | AS        | Peering   |
| Stable state | 32        | 31         | 24        | 23        |
| Withdrawal   | 94 (2.9x) | 211 (6.8x) | 28 (1.2x) | 49 (2.1x) |
| AS-set       | 97 (3.0x) | 222 (7.2x) | 29 (1.2x) | 55 (2.4x) |

New ASes and peerings found in the discovery process



### **Topology discovery: results by level**



RIPE

NCC



### **Comparison with existing methods**

- We compared our per-prefix discovery methods to perpath methods
  - W is a feasibility graph obtained using withdrawal observation
  - C obtained by fusing all AS-paths from ORV
    - Seen at time withdrawal was made
  - *I* is the graph induced on C by the nodes in *W*
  - Compare number of arcs seen

RIPE

NCC



### **Comparison with existing methods: results**

• W has ~ 50% (IPv6) or 25% (IPv4) of the arcs in I

- The topology of the complete graph is much richer
  - This is not a weakness, it is a strength!
    - We only discover feasible peerings
    - Z has little interest in peerings that are not feasible

- We also discovered a few arcs not seen in C
  - Probably backup paths only seen during convergence

RIPE

мсс



| T.T     | e - |   |          |    | Ξ |  |
|---------|-----|---|----------|----|---|--|
| = . =   |     | - |          |    |   |  |
|         |     |   |          |    | Ξ |  |
| _ = A = |     |   | $\wedge$ | L  | Ξ |  |
| EAE     |     |   | /        | ١. |   |  |

| I   | W         | I only | W only   |
|-----|-----------|--------|----------|
| 312 | 158 (51%) | 175    | 21 (13%) |
| 334 | 168 (50%) | 189    | 23 (14%) |
| 302 | 154 (51%) | 174    | 26 (17%) |

#### IPv6

#### IPv4

| I   | W        | I only | W only |
|-----|----------|--------|--------|
| 241 | 61 (25%) | 181    | 1 (2%) |

- 🥥





#### Conclusions

Lorenzo Colitti

- 🥥

۹





- Existing methods do not permit the discovery of alternate paths that could be used in case of faults or routing changes
- Our methods allow an ISP to:
  - Discover alternate paths
  - Partially deduce other ASes' routing policies
  - Measure performance in alternate routing states
- Testing on the IPv4 and IPv6 Internet shows they are effective

## Bibliography



- L. Colitti, G. Di Battista, M. Patrignani, M. Pizzonia, M. Rimondini, *Discovering Interdomain Prefix Propagation Using Active Probing*, to appear in Proc. IEEE ISCC 2006, June 2006
- L. Colitti, G. Di Battista, M. Patrignani, M. Pizzonia, M. Rimondini, *Active BGP Probing*, Technical Report RT-DIA-102-2005, November 2005

http://www.dia.uniroma3.it/~compunet/bgp-probing/ compunet@dia.uniroma3.it

| Lorenzo | Co | litti |
|---------|----|-------|
| LOIONLO | 00 |       |





### **Questions?**

Lorenzo Colitti

- 0

۹