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Main ldeas of This Talk

* |In general, there exist multiple graphs having the
same aggregate statistics (we know this!)

« BUT, how to characterize the “diversity” among
these graphs?
— Use degree distribution as an example
— Similar questions arise for other metrics

e Some graph theoretic metrics implicitly measure

against a “background set”.
— the nature of this background set can have serious
Implications for its interpretation
— OR... are all graph theoretic measures comparable?



Some notation

Let (/. denote the degree of node |

Call D = {dy.da,.... d,,} degree sequence of graph
Assume D is always ordered such that dq{ >dy > ... > dp

We will focus on diversity among graphs having the
SAME degree sequence D...
... particularly when D is scaling.

Deterministic form of scaling Relationship:
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Scaling and high variability

e For a sequence D,

average degree: d=n"1Y"7_, d,
Al A . T T T /7 N2 /7 \N1/2
standard deviation: STD(D) = (>7_,(dp —d)=/(n — 1))~/
STD(D)

coefficient of variation: CV (D) =

— If Dis Scaling (h—99), a<2 ,CV(D) = ©&©
— Star (h—»©9), CV(D) = eo

— Chain (n—©9), CV(D)= 0
— If D has exponential form, CV(D) = Constant



Variability in the space of graphs G(D)
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A Structural Approach

e S-metric

s(g) = Zdidj

(I, ))ee

e Properties:
— Differentiate graphs with the same degree sequence

— Depends only on the connectivity of a given graph not
on the generation mechanism

— High s(g) is achieved by connecting high degree
nodes to each other

— Quantify the role of the highly connected hubs



For any dedree sequence D,
one can construct an smax Graph

* The s, ., graph iIs the graph having the
largest s(g)-value

* Its value depends on the “Background Set”
of graphs



Impact of Background Sets on
the smax Graph

Let G(D) denote the space of graphs having degree sequence
D (could be disconnected or non-simple). One can show that
within G(D):

Smax = Zyzl(di/Q) . d7;2 — 2?21 di3/2

e Let G(D) denote the space of simple and connected graphs
having degree sequence D.
Among graphs in G(D) (simple, connected)
— Deterministic way to generate
— Order all potential links (i, J) according to their weight
— Among Acyclic graphs (trees)
 From high degree node to low degree node
= We will use the normalized metric: S(g) = s(g) / Spax



(e) Graph Degree
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Graph diversity and Perf(g) vs. s
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Smax and graph metrics

Node Centrality

— In smax graph, high degree nodes have high
centrality

Self similarity

— Smax graph remains smax by trimming, coarse
graining, highest connect motif

Graph likelihood

— smax has highest likelihood to generate by GRG

Conjecture:

— Smax graphs are largely unique in terms of their
structure



s-metric and Degree Correlations

« Assume an underlying probabilistic graph model

o Degree correlation between two adjacent vertices k, kK’ Is
defined as

' ] ke - - !
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where -

i v 11 ) 1 ifnode i of graph g has degree k
0|Di(g) — k| = { 0 otherwise.

P 1 ifnodes i. j are connected
Y1 0 otherwise

 The s-metric Is related to the degree correlation:

— 7 Z k' Pk, k)
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s-metric and Assortativity r(q)

A notion of degree correlation

— Assortative mixing: a preference for high-degree
vertices to attach to other high-degree vertices

— Disassortative mixing: the converse
Definition [Newman]:

D op e FE(QUkE) — Q(k)Q(E)) r e [_11]
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>0, assortatitive, social networks
<0, disassortitive, internet, biology networks



Graph diversity and r(g) vs.

s(9)
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Assortativity r(d)

For a given graph, assortativity is:

ra—

[T eV %“ﬂ - [Zev %”Fﬂ : /1
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Normalization term

[T _l{fiﬂ smax of unconstrained graph

r(g) =

e e

Centering term
D l”rlf /1 Center of unconstrained graph
~ds |7,

LV 2

r=1: all the nodes connect to themselves
r=-1:. depends on the degree sequence

Background set is the unconstrained graph!



simple experiment

e generate multiple trees by adding a node k to an
existing node j, with probability I1(j) o (d))P
- p=1 < linear preferential attachment
— p=0 < uniform attachment
— p—>x < attach to max degree node (result = a star)
— p—-0 < attach to min degree node (result = a chain)

e each trial results in a tree having
— Its own degree sequence D, s-value, CV(D)

— Its own smin and smax values (from D),
— Its own rmin and rmax values (from D)
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rmax
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Conclusions

 The set G(D) of graphs g with fixed scaling
degree D can be extremely diverse

e s-metric can highlight the difference of the
graphs in G(D).

e S-metric has a rich connection to self-similarity,
likelihood, betweeness and assortativity

* the nature of this background set can have
serious implications for its interpretation

* These Issues apply to metrics other than simple
degree sequence (e.g., two-point degree
correlations)
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