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Main Ideas of This Talk
• In general, there exist multiple graphs having the 

same aggregate statistics (we know this!)
• BUT, how to characterize the “diversity” among 

these graphs?
– Use degree distribution as an example 
– Similar questions arise for other metrics

• Some graph theoretic metrics implicitly measure 
against a “background set”.
– the nature of this background set can have serious 

implications for its interpretation
– OR… are all graph theoretic measures comparable?



Deterministic form of scaling Relationship:

Call                                  degree sequence of graph
Let       denote the degree of node i

Some notation

We will focus on diversity among graphs having the 
SAME degree sequence D…

… particularly when D is scaling.



Scaling and high variability
• For a sequence D, 

– If D is Scaling (n→∞),  α<2 , CV(D) = ∞
– Star (n→∞), CV(D) = ∞
– Chain (n→∞), CV(D) =  0
– If D has exponential form, CV(D) = Constant
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A Structural Approach
• s-metric

• Properties:
– Differentiate graphs with the same degree sequence
– Depends only on the connectivity of a given graph not 

on the generation mechanism
– High s(g) is achieved by connecting high degree 

nodes to each other
– Quantify the role of the highly connected hubs
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For any degree sequence D, 
one can construct an smax Graph
• The smax graph is the graph having the 

largest s(g)-value 
• Its value depends on the “Background Set”

of graphs



•

•

Among graphs in G(D)  (simple, connected) 
– Deterministic way to generate
– Order all potential links (i, j) according to their weight
– Among Acyclic graphs (trees)

• From high degree node to low degree node

⇒ We will use the normalized metric: S(g) = s(g) / smax

Impact of Background Sets on 
the smax Graph
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S(g)=0.39

S(g)=0.98
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smax and graph metrics
• Node Centrality

– In smax graph, high degree nodes have high 
centrality

• Self similarity
– smax graph remains smax by trimming, coarse 

graining, highest connect motif
• Graph likelihood

– smax has highest likelihood to generate by GRG
• Conjecture:

– smax graphs are largely unique in terms of their 
structure



s-metric and Degree Correlations
• Assume an underlying probabilistic graph model

• Degree correlation between two adjacent vertices k, k’ is 
defined as

• The s-metric is related to the degree correlation:

where



s-metric and Assortativity r(g)

• A notion of degree correlation
– Assortative mixing: a preference for high-degree 

vertices to attach to other high-degree vertices
– Disassortative mixing: the converse

• Definition [Newman]:

• r>0, assortatitive, social networks
• r<0, disassortitive, internet, biology networks

[ ]1,1−∈r
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Perf = 2.93X10e11
S(g)=0.39
r = -0.4815, 

Perf = 6.06X10e9
S(g)=0.98
r = -0.4283,

Both graphs have same degree 
distribution and very similar 
assortativity!!!



Assortativity r(g)

• For a given graph, assortativity is:

• Normalization term

• Centering term

• r=1: all the nodes connect to themselves
• r=-1: depends on the degree sequence
• Background set is the unconstrained graph!

smax of unconstrained graph

Center of unconstrained graph  



simple experiment

• generate multiple trees by adding a node k to an 
existing node j,  with probability Π(j) ∝ (dj)p

– p=1 ⇔ linear preferential attachment
– p=0 ⇔ uniform attachment
– p→∞ ⇔ attach to max degree node (result = a star)
– p→-∞ ⇔ attach to min degree node (result = a chain)

• each trial results in a tree having
– its own degree sequence D,  s-value, CV(D)
– its own smin and smax values (from D), 
– its own rmin and rmax values (from D)
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S vs. CV Assortativity vs. CV
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Conclusions
• The set G(D) of graphs g with fixed scaling 

degree D can be extremely diverse
• s-metric can highlight the difference of the 

graphs in G(D).
• s-metric has a rich connection to self-similarity, 

likelihood, betweeness and assortativity
• the nature of this background set can have 

serious implications for its interpretation
• These issues apply to metrics other than simple 

degree sequence (e.g., two-point degree 
correlations)
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