

Modeling The Internet Topology And Its Evolution

Shi Zhou University College London

Outline

- Part 1. Background
- Part 2. The PFP model
- Part 3. Evaluation of the PFP model
- Part 4. Discussion

UCL

Part 1. Background

- Why study Internet topology?
 - Because structure fundamentally affects function.
- This work focuses on the Internet topology at the autonomous systems (AS) level.
 - 100M hosts, 2M routers and 10K ASes in 2002.

The Internet AS-level topology

Scale-free network

- Power-law degree distribution
- Small-world network
 - Average shortest path length is 3.12 hops.
- Disassortative mixing
 - Negative degree-degree correlation
- Rich-club phenomenon
 - 'Rich' node are tightly interconnected as a core.

What is a good model?

- Accurate
- Complete
 - A full picture, a large set of topology properties.
- Simple
- Evolving
 - Using generative mechanisms.
- Realistic

Part 2. The PFP model

• The Positive-Feedback Preference model

- Physical Review E, vol.70, no.066108, Dec. 2004

Two mechanisms

- Interactive Growth
- Positive-Feedback Preference

The Barabàsi-Albert (BA) model

Observations on Internet historic data (1)

- The internet evolution is largely due to two processes
 - Attachment of new nodes to the existing system.
 - Addition of new internal links between old nodes.
- Majority of new nodes are each attached to no more than two old nodes.
- Ratio of links to nodes is approximately three.

So, independent growth of new nodes and new links?

Mechanism 1 -- Interactive Growth

• Intuition: new customer triggers a service provider to develop new connections to other service providers.

Observations on Internet historic data (2)

- The maximum degree is very large.
 As large as one fifth of the total number of nodes.
- Link-acquiring ability
 - Low-degree nodes follow the BA model's linear preference.
 - But high-degree nodes have a stronger preference.

So, exponential preference ?
$$k^{a>1}$$

Mechanism 2 – 'Positive-Feedback' Preference

"Rich not only get richer, but get disproportionately richer."

Part 3. Validation of the PFP model

- **ITDK0403**, Traceroute measurement of the Internet AS graph collected by the CAIDA's active probing tool *Skitter* in April 2003
 - 9204 nodes and 28959 links
- CN05, Chinese Internet
 AS graph in May 2005.
 84 nodes and 211 links
- Same model parameters
 - Interactive growth, p=0.4
 - PFP, δ=0.021

Degree Distribution

				10 ⁰ [CN05 •
				i i	PFP model (N=84) ITDK0304 ○
	γ	Kmax	Distribution	10 ⁻¹	PFP model (N=9204)
CN05	-2.21	38		10 ⁻²	• M
PFP	-2.21	39			
ITDK	-2.254	2070		10 ⁻³	
PFP	-2.255	1950			
				10-4	
				10	0^0 10^1 10^2 10^3 10^4
					Dearee

1 7

Rich-Club Phenomenon

Rich-Club Connectivity

- Club membership: The richest *r* nodes or nodes with degree larger than k.
- Ratio of actual links to maximum possible links between club members.

Papers on the rich-club phenomenon

- Shi Zhou and Raul J. Mondragon, 'The rich-club phenomenon in the Internet topology', IEEE Communications Letters, vol. 8, no. 3, pp.180-182, March 2004.
- Shi Zhou and Raul J. Mondragon, , 'The missing links in the BGP-based AS connectivity maps (extended abstract)', in Proc. of Passive and Active Measurement Workshop (NLANR-PAM03), San Diego, USA, April 2003.

Disassortative Mixing

Shortest Path Length

18

Triangle Coefficient

Part 4. Discussion

- A precise and complete Internet AS topology generator?
- Structure of CN05 is consistent with ITDK0304.
 - Implication: The Internet evolution is driven by universal performance-orientated technical issues.
- Limitation of the PFP model
 - A phenomenological model, need more analysis.

Thank You !

s.zhou@ucl.ac.uk