DNS and Evidence-Based Security

WIE-KISMET December 9, 2019

Geoffrey M. Voelker University of California, San Diego

Computer Science and Engineering

Evidence-Based Security

- Our work in DNS and related areas has been motivated by long-term cybersecurity projects
 - Wide variety of security projects over time
 - DNS often plays a role since it is a fundamental resource
- Our approach has been heavily measurement-based
 - Effective intervention requires reasoning about motivations, incentives, requirements, communities

Impact of Domain Registration Policy Changes

• Dec 2009: CCNIC policy changes induces 70x change in price of .cn domains

- Effectively, a global sweeping change by a registrar
- How did that influence spammers?

Liu, Levchenko, Félegyházi, Kreibich, Maier, Voelker, Savage, On the Effects of Registrar-level Intervention, LEET 2011

Impact of New TLDs

- Explore impact of new TLDs on DNS
- Do new TLDs serve their purpose ("meet unmet needs")?
- Approach
 - Examine one new TLD in detail
 - Expand to all new TLDs (circa 2014)

The .xxx TLD

- Unusual TLD with storied history
- Specialized TLD intended for adult content
 - First proposed in 2000 by ICM Registry
 - Debated for 10 years
 - "...community will consist of the responsible global online adult-entertainment community"
- Criticisms from many parties
 - Trademark holders
 - Adult entertainment industry (Free Speech Coalition)

Halvorson, Levchenko, Savage, Voelker, XXXtortion? Inferring Registration Intent in the .XXX TLD, WWW 2014

Content Categorization

- Classified all .xxx domains by type of content served
 - 193,363 domains in April 2013
- Web content
 - Crawled all domains in zone file
 - January 10, 2013 and April 12, 2013
 - Clustered using text shingling
 - Generate labels using top clusters
- WHOIS records
 - For identifying registered non-resolving

Reserved Domains

		×		
$\leftarrow \rightarrow$ \circlearrowright \bigtriangleup \bigcirc microsoft.xxx/	B			
This domain has been reserved from registration.				
Copyright 2011 ICM Registry LLC				

Registered Non-Resolving

- Registered but not in zone
 - $\$ dig ucsd.xxx \rightarrow NXDOMAIN
- GoDaddy: "this is how to defend"
- Use ICANN reports
 - No exhaustive list
 - Can infer numbers
- Intent: Defensive

Month

Summary

• Does .xxx meet unmet needs?

→ Absolutely not

- Little benefit to intended demographic
 - Whatever adult content is out there, it's not in .xxx
- Huge cost to everyone else
 - Defensive registrations 93% of ongoing revenue
 - To protect yourself, you have to register to prevent someone else from registering it for you

New gTLDs

- Comprehensively identify all domains in new TLDs
 - New TLDs up to 2015
 - Register for zone file access at ICANN
 - Download over 500 zone files daily
- DNS + Web crawl for content
 - Every domain in a new TLD
 - Millions from old TLDs (for reference)
 - Web: 150GB visit, 1.5TB screenshots
- Cluster + label downloaded content
 - Bag of words, k-means, active learning

Halvorson, Der, Foster, Savage, Saul, Voelker, From .academy to .zone: An Analysis of the New TLD Land Rush, IMC 2015

Content in Top TLDs

Registration Intent

Registration Intent	Result	
Primary	378,401	14.9%
Defensive	1,005,109	39.5%
Speculative	1,161,892	45.6%

Primary registrations the lowest category

Registrar-level Attacks

- Recently we have been interested in registrar attacks
 - Registrar compromise, registrar account compromise, etc.
- Attackers gain substantial leverage
 - Shadow subdomains, DNS hijacking, etc.
 - Motivated by attacks such as the 2014 Snecma.fr attack
 - Particularly problematic since changes come from "owner"
- Have been focusing on nameservers in particular
 - Valuable targets, particularly useful for hijacking

Nameserver Abuse

- Initially focused on suspicious nameserver activity
 - Active crawls and passive zone files
- But unusual behaviors can have benign explanations
 - New NS added for 1-2 days that maps to an unusual /24?
 - Sometimes highly suspicious...sometimes benign
- Have been systematically categorizing nameserver dynamics to establish a "baseline"
 - Consistency
 - > Misconfigurations, incomplete data, routing issues, etc.
 - Diversity
 - > Topological concentration of NS's and domains that use them
 - Dynamics
 - Joint with University of Twente, CAIDA, Ian Foster

Threat Intel

- Threat Intelligence (TI) feeds distribute "indicators of compromise" for input into defenses
 - IP addresses, file hashes, domain names, URLs
 - Appearing on a feed indicates something "bad"
- Using feeds now a standard operational practice
 - Many feed sources, both public and commercial
- How can a user evaluate the quality and utility of threat intelligence feeds?
 - How do you choose which feed to use, or how many?
 - How useful are they? (How do you define useful?)

Li, Dunn, Pearce, McCoy, Voelker, Savage, Levchenko, Reading the Tea Leaves: A Comparative Analysis of Threat Intelligence, USENIX Security 2019

Threat Intel Evaluation

- Define six metrics for evaluation
 - Volume, differential contribution, exclusive contribution, latency, accuracy, coverage
- Define methods for calculating metrics across feeds
 - Account for variations (e.g., snapshot vs event)
- Examine 47 IP feeds and 8 malware hash feeds
 - Dec 2017 July 2018
 - Commercial and public feeds
 - Categorized into six types: scan, brute force, malware, botnet, exploit, spam

Threat Intel Results

- Significant issues across the metrics
 - Coverage is poor when compared to ground truth data
 - Scan feeds all combined only account for 2% of telescope scans
 - Accuracy issues can lead to false positives
 - > Non-trivial amount of unroutable, top Alexa, CDN IPs
 - Most IP indicators are singletons (very low intersection)
 - Little evidence that larger feeds contain better data
- Challenges
 - Providers do not explain how data is collected and labelled
 - Left to users to decide how to interpret
 - Little insight into operational uses of feeds

