Overview of NDN Platform,
Application Libraries, and API

NDNComm 2014
September 4, 2014
jburke@ucla.edu

Motivation

“The NDN project's approach is to design and build a variety of
applications on NDN to drive the development and deployment of
the architecture and its supporting modules, to test prototype
implementations, and to encourage community use, experimentation,
and feedback into the design.

“Application-driven development also allows verification and
validation of performance and functional advantages of NDN, such as
how routing on names promotes efficient authoring of sophisticated
distributed applications, by reducing complexity, opportunities for
error, and time and expense of design and deployment.”

- Afanasyev et al., “Named Data Networking,” CCR July 2014.

NDN Platform

Provide a coherent, usable, and well-documented “platform” for
exploring NDN in practical applications — for the NDN project team and
external users.

Use a release “heartbeat” to stimulate interoperability testing and
discussion of how the various moving parts work together.

Along the way, improve access to and consistency of various NDN code
projects.

Open and lightweight process, with no unrealistic centralization or over-
management but clear ownership of each component project.

Managed nodes on the testbed run the Platform.

NDN Platform 0.1 (Aug ‘13)

NDNx — Team fork of CCNx
— C API support only, no Java, limited Android support

— Include NDNLP
— Break in APl compatibility with CCNx

NDN-CCL — Common Client Libraries
— ndn-cpp, ndn-js, PyNDN (also break in compatibility?)
— Naming conv change for Interest/ContentObject?

NDN on Node

ndnSIM v.5 — Simulator

NDN Network Tools — ping, ndndump
Package manager support — Macports

NDN Platform 0.3 (August 2014)

NFD NDN Forwarding Daemon, version 0.2.0

ndn-cxx library, version 0.2.0
— The NDN C++ library with eXperimental eXtensions (CXX)
— The ndnsec security tools to manage security identities and certificates

NDN-CCL - NDN Common Client libraries suite, version 0.3
— NDN-CPP C++ / C library
— PyNDN2 Python library
— NDN-JS JavaScript library (with Node.js support)
— jNDN Java library (preliminary)

NLSR - Named Data Link State Routing Protocol , version 0.1.0
repo-ng - next generation of NDN repository, version 0.1.0
ndn-tlv-ping - ping application for NDN , version 0.2.0
ndn-traffic-generator - traffic generator for NDN , version 0.2.0
ndndump - packet capture and analysis tool for NDN, version 0.5

Preliminary binary package support on Ubuntu, MacOS X, others...

Supported platforms

* Required

— Two most recent Ubuntu LTS releases with the gcc which comes with apt, both 32-
bit* and 64-bit, 2GB memory

— Latest three OS X releases with the clang which comes with XCode, 64-bit, 2GB
memory

e Optional

— Latest Ubuntu release (if not LTS) with the gcc which comes with apt, 64-bit, 2GB
memory
— Latest Windows with Visual Studio, 64 bit, 2GB

— Latest FreeBSD “RELEASE” with the clang which comes with ports, 64 bit, 2GB
memory

http://named-data.net/codebase/platform/documentation/ndn-platform-
development-guidelines/#Build support

Licensing
 GPLv3 applications (mostly)
* LGPLv3 libraries

* Open and cost-free

Community support

* One Github repo for all code

e Public redmine

* Per-component wiki

* Code review

* Continuous integration

* Technical reports (NFD, NDN-CCL, etc.)
* Mailing lists

Open to contributors and collaborators!

Evolution of the libraries

* All libraries now reflect fundamental architectural abstractions
directly in objects, and wire format manipulation is abstracted.
— Name
— Interest
— Data
— Face

— KeyChain

 Two library efforts available to community
— NDN-CXX: “C++ for eXtended eXperimentation”
— NDN-CCL: “Common Client Libraries”
— Enables diversity of coding choice
— Drives us towards specification (and not just implementation)

ndn-cxx: NDN C++ library for eXtended eXperimentation

* Application-driven iterative library extension and evolution

— Stable but evolving APl based on application needs
* New and extended APIs to support application patterns

— Playground for experimental features

* Prioritizing developer productivity for experimentation

— encouragement and extensive use of Boost libraries and modern application
patterns

* leveraging > 7000 person years of high-quality code*
— multiple utility classes and helpers to simplify common operations
* Purity
— Pure C++ implementation, adherent to OOP principles
— Simplified maintenance and extensibility

* http://www.boost.org/development/index.html

ndn-cxx: Available Functionality

Base
— Fully asynchronous communication model based on Boost.Asio
— Single-threaded, but thread-safe Face operations
— Explicit time management based on Boost.Chrono
— Test-driven development with continuous integration
Security library with latest extensions and experimental features
— Security primitives to simplify development of NDN applications
— Flexible trust model for packet validation
* set of built-in trust models
* policy-based custom trust model definition
Utility classes

— Scheduler, NDN regular expressions, NFD management protocols helpers, random
number generator, digest calculation, routines to work with time, NFD
management support, security credentials 10, security library, etc

Miscellaneous tools
— ndnsec tools to manage security, tlvdump to visualize NDN-TLV

ndn-cxx: Usage Cases

 The library is currently being used as part of the following
projects:

NFD - NDN Forwarding Daemon

NLSR - Named-data Link-State Routing protocol

repo-ng - Next generation of NDN repository

ChronoChat - Multi-user NDN chat application

ChronoSync - Sync library for multiuser realtime applications for NDN
ndn-tlv-ping - Ping Application For NDN

ndn-traffic-generator - Traffic Generator For NDN

NDN-CCL “Common Client Library”

Encourage development and experimentation with NDN for a large
audience of developers

Reasonably consistent, stable APl across multiple platforms and
languages, plus language-specific syntax (typically more concise)

Minimal dependencies or assumptions about threading/memory
management for easier integration with applications

Track updates to message protocols and the TLV wire format

Incorporate advances from NDN research projects as library modules to
speed adoption by applications (Security, Sync, etc.)

Provide install packages where possible so applications can deploy easily

Features

Languages
— C++ with Ccore
— Python (2 and 3),
— JavaScript (browser and Node.js)
— Java (preliminary)

Helper functions
— Basic interaction with NFD including Signed Interests
— Protobuf+TLV based cross-platform message description
— MemoryContent Cache

Port of security library developed for ndn-cxx (Y. Yu)
— Full support in C++ and Python
— Preliminary support in other languages

Port of ChronoSync 2013 (experimental feature)
— Full support in C++ and Javascript

NDN-CCL Applications

* CCNx Federated Wiki, an NDN port of the Smallest Federated wiki (NDN-JS)
* Chronochat-js, a javascript implementation of the ChronoChat demonstration application (NDN-JS)

* Matryoshka, an experimental multi-player online game using NDN and the Unity3D game engine.
(jndn as the basis of the .NET port of CCL used in this project.)

* ndn-bms, a building management system prototype being developed as part of the NDN-NP
project (PyNDN, NDN-JS)

* ndn-lighting, lighting control application using NDN (PyNDN, NDN-JS)

* ndn-protocol, a firefox browser plug-in supporting an ndn:/ retrieval scheme (NDN-JS)

* ndnfs and ChronoShare, NDN file sharing platforms (PyNDN, NDN-JS — with ndn-cxx)

* NDNoT, the Named Data Network of Things toolkit for the Raspberry Pl (PyNDN, NDN-JS)

* ndnrjs, a javascript implementation of an NDN repository (NDN-JS)

* ndnrtc, a peer-to-peer multiparty audio, video, and chat application over NDN. (NDN-CPP, NDN-JS)

* ndnstatus, the NDN routing status web page (PyNDN, NDN-JS)

* NDNVideo, a video playout application for NDN (PyNDN)

Coming:

* NDNEXx, an NDN-based mobile health application being developed as part of the NDN-NP research
project. (jndn)

* OpenPTrack-NDN an open source person tracking system that will add NDN support in Fall 2014.
(NDN-CPP)

Research: New Protocols + Advanced APIs

 Consumer / Producer API
Moiseenko & Zhang. NDN Technical report #17, 2014.

* SYNC: Efficient synchronization of namespaces

Zhu & Afanasyev. "Let's ChronoSync: Decentralized dataset state
synchronization in Named Data Networking." ICNP, 2013.

Security approach

Consistent across ndn-cxx and NDN-CCL
Reference implementation is ndn-cxx security components

Data packets typically signed and verified with a default
key of RSA 2048-bit. ECDSA also supported. (Probably
other more efficient verification techniques in the future.)

Most flexibility, power, and challenges in how trust is
managed — still an open area of research.

ndn-cxx Security Library

Abstractions

— Certificate (same as signing certificate or identity certificate)

* identified by NDN identity certificate name

* carries “real-word” identity and other meta information

e associated with the private key
— Key (same as signing key)

* identified by a “logical” name of a private key

* “container” for the public (derived from the private) key certificates
— ldentity

* defines signing namespace and is identified by this namespace

* container for one or multiple keys

http://named-data.net/doc/ndn-cxx/current/tutorials/security-library.html

Data and Interest Validation

 Two-part Validation
— Check if key is authorized to sign Data/Interest
* name of the key matches Data/Interest name based on some rule

e until reaching a trust anchor or step limit
— Check signature validity
* Application defines when to do when packet is received
— Either manually or using “Validator”-derived class
— ValidatorNull: null-validation

— ValidatorRegex
e compile-time defined “rules” and trust anchor

— ValidatorConfig
* run-time defined “rules” and trust anchors

ValidatorRegex

 Compile-time configuration

Set of NDN regular expression rules
Set of trust anchors

Lifetime of trusted certificate cache
Limit on certification chain depth

Face face;
ValidatorRegex validator(face);

// Hierarchical Trust Anchor
IdentityCertificate anchor = ...;
validator.addTrustAnchor(anchor);

// Hierarchical Trust Rules
SecRuleRelative rule(

// Extract authority namespace from data
name

(1] (<>*) 14 ,

II\\1II ,

// Extract authority namespace from key
name

" (<>%)<KEY><ksk-.*><ID-CERT><>$",

Il\\lll ,

// Key’'s authority namespace must be

parent of data’s namespace
">II)) ;

validator.addRule(rule);

20

Configuration File Based Validator

Compile-time configuration

— Lifetime of trusted certificate cache
— Limit on certification chain depth

Run-time configuration (configuration
file)

— Set of NDN regular expression rules
— Set of trust anchors

; One or more "rule"
rule
{
id Il<id>ll
for data ; or "for interest"

; Apply the rule only for packet that
match the filter

filter

{

}

; Make a decision of valid/invalid
based on the checker configuration
checker

{

by
by

; One or more "trust—-anchor"
trust-anchor

{
L

21

Naming Conventions

Namespace design is a critical component of application development.

“Where possible, put it in the name” philosophy is expressing some packet
requirements / features in the name.

Three areas covered here
— Scope control obeyed by NFD: /localhost, /localhop
— Signed interest format

— Versioning, segmenting, etc.

Naming Conventions

Namespace design is a critical component of application development.

“Where possible, put it in the name” philosophy is expressing some packet
requirements / features in the name.

Three areas of library support covered
— Scope control obeyed by NFD: /localhost, /localhop
— Signed interest format

— Versioning, segmenting, etc.

For scope control

http://redmine.named-data.net/projects/nfd/wiki/ScopeControl

/localhost

Limits propagation to the applications on the originating host.
It is equivalent to Scope=1.

/localhop

The localhop scope limits propagation to no further than the next node.
It is equivalent to Scope=2.

24

For groups of objects

Technical Report #22, “Naming Conventions”
Marker (Platform v0.3) vs. Hierarchy-based encoding (Platform v.0.4 targeted)

Segmenting
— Cut large data (e.g. video frame) into packet-sized pieces
— Final segment indicated by Metalnfo FinalBlockID
— appendSegment/toSegment, appendSegmentOffset/toSegmentOffset

Versioning
— Data packet is immutable: a new version needs a new name
— Suggest millisecond time stamp but not required
— appendVersion/toVersion
Time-stamping
— When data packet was produced
— Microseconds since January 1, 1970
— appendTimestamp/toTimestamp
Sequencing
— Sequential items in a collection

— 0,1, .. X. Assume item X + 1 may be produced
— appendSequenceNumber/toSequenceNumber

For Interest signing

/command/params/<timestamp>/<random-value>/<SignatureInfo>/<SignatureValue>
— params may be TLV-encoded data

The signature covers name components through Signaturelnfo

Signaturelnfo and SignatureValue the same as a Data packet

Example: Register
— /localhost/nfd/rib/register/<control-parameters>/<timestamp>..
— ControlParameters ::= CONTROL-PARAMETERS-TYPE TLV-LENGTH

Name? Faceld? Uri? LocalControlFeature? Origin? Cost? Flags? Strategy?
ExpirationPeriod?

What’'s next

“A few years of designing and developing prototype applications
on NDN has revealed five key areas of application research that
map to important features of the architecture:

(1) namespaces;

(2) trust models;

(3) in-network storage;

(4) data synchronization;

(5) rendezvous, discovery, and bootstrapping.”

- Afanasyev et al., “Named Data Networking,” CCR July 2014.

Also, see Tech Report #17 for ideas on API evolution.

Where to find things

http://named-data.net

http://github.com/named-data

http://named-data.net/doc/NFD/
http://named-data.net/doc/NLSR/
http://named-data.net/doc/ndn-cxx/
http://named-data.net/codebase/platform/ndn-ccl/

28

Overview of NDN Platform,
Application Libraries, and API

NDNComm 2014
September 4, 2014
jburke@ucla.edu

29

