1.0.0.0/8

Merit	APNIC	University of Michigan
Eric Wustrow	George Michaelson	Micheal Bailey
Manish Karir	Geoff Huston	Farnam Jahanian

Background

- We are now down to the last 16 /8s in IPv4 for allocation
- There is a growing concern that these blocks are increasingly less desirable
 - 'Who said the water at the bottom of the barrel of IPv4 addresses will be very pure?' – NANOG POST
 - "+1" NANOG POST ;)
- IANA allocated 1.0.0.0/8 to APNIC in January 2010

Today's Talk

- What is normal for an unallocated block? Is 1.0.0.0/8 any different?
 - Amount of traffic
 - Protocols used
 - Ports used
 - Source and destination distributions
- If it is different, why is it different?
- What can we do about it?

First Evidence that Something is Fishy

- 27 January 2010 RIPE NCC announces
 1.1.1.0/24, 1.2.3.0/24, 1.50.0.0/22 and
 1.255.0.0/16
- http://labs.ripe.net/content/pollution-18

Routing of 1.0.0.0/8

http://albatross.ripe.net/cgi-bin/rex.pl

Ok but how much of a problem is this?

- Merit (AS237) announced 1.0.0.0/8 from 23
 Feb until 1 March 2010
 - Collected 7.9Tb of packet capture data

Traffic to 1.0.0.0/8

Packet Rate to 1.0.0.0/8

Peak Burst at 220Kpps

But how abnormal is this?

- Merit (AS237) announced 1.0.0.0/8 from 23
 Feb until 1 March 2010
- Merit announced 35.0.0.0/8 during the same period. Unused minus a single /17 block.

Is 1/8 Normal? No Way!

Total Volume

Comparing Pollution Types

- 1/8 (% of packets):
 - Scanning: 17.9% (12.5B)
 - Backscatter: 1.9% (1.34B)
 - Misconfiguration (Other): 80.2%
- 35/8 (% of packets):
 - Scanning: 69.7% (15.5B)
 - Backscatter: 6.2% (1.39B)
 - Misconfiguration (Other): 24.1%

What's going on?

Top 10 Contributors are 75% of Packets

Subnet /24	Packets	%
1.1.1.0	4797420185	44.5
1.4.0.0	1884458639	17.5
1.0.0.0	1069156477	9.9
1.2.3.0	199452209	1.8
1.1.168.0	62347104	0.5
1.10.10.0	26362000	0.2
1.0.168.0	18988771	0.1
1.1.0.0	18822018	0.1
1.0.1.0	14818941	0.1
1.2.168.0	12484394	0.1

1.1.1.1:15206

- For 1/8, 34.5% of all packets (and 50.1% of all bytes) received are UDP packets to 1.1.1.1, destination port 15206.
 - Compare to 35/8, which on the same UDP port (across the entire /8) received a total of 4703 packets (0.00066%) in one day.

What are they?

- Most of the payloads looks like version 2 RTP packets
 - 75% of all bytes to this port have 0x8000 first 16 bits (first two bits is the version number and the next 14 all 0)
 - the majority of packets are 214 bytes in size (89.4%)
 - the vast majority (97.3%) of them are even ports (hinting at RTP data)
- Hand full of bad applications devices
 - All this coming from only 1036 /24s in 1 day of data
 - And from only 1601 source ports seemingly unrelated to the ephemeral port ranges

It turns out, the 1.0.0.0/8 traffic is mostly audio data!

- Took one stream, from XXX.148.35.10, source port 13464 and noticed the PT field was 00
 - PCMU, a raw-ish (compressed dynamic range) audio wave format.
- Converted this into a .au file using wireshark, and it is indeed an audio file. Take a listen for yourself:

1.4.0.0

- For 1/8, 17.5% of all packets (and 10% of all bytes) received are UDP packets to 1.4.0.0, destination port 33368, 514, 33527, 3072, 33493
 - Surprisingly most of these could be interpreted as
 DNS traffic of different types, A, AAAA, MX, etc.
 - Possibly sourced from ASUS ADSL modem
 - Most appear to be misdirected queries:
 - hotelnikkohimeji.co.jp.
 - x.myspacecdn.com
 - typepad.com
 - th411.photobucket.com

1.2.3.4:5001

- Traffic to 1.2.3.0 is 1.8% of all packets
- Iperf traffic to 1.2.3.4 is roughly 10Mbps of traffic from less than a 100 unique sources
- The top contributor (a single IP from 41.194.0.0/16) sent roughly 70M pkts/day

rfc1918 analysis (or is it rfc32263?)

- Some other popular destinations are 1.1.168.0, 1.0.168.0, 1.2.168.0?
- Most of the packets are going to:1.1.168.192,
 1.0.168.192,
 1.2.168.192.
- These IPs are really just 192.168.x.1, in host-byte order (little-endian), someone is not doing a proper htonl(ip_addr); somewhere, and we are catching the data.
- Destination port 80, over UDP (yeah...UDP, not TCP), length = 1, and data of 0x31

What can we do about it?

- APNIC suggested that the following /24s be withheld from general allocation:
 - -1.0.0.0/24
 - -1.1.1.0/24
 - -1.2.3.0/24
 - -1.4.0.0/24
 - -1.10.10.0/24
- If further investigation reveals that the traffic to any of these /24s abates to a normal background level in the future, then these addresses would be returned to the APNIC unallocated address pool at that time.

What can we do about it (cont)?

 It is recommended that the following /16s be temporarily marked as reserved and withheld from general allocation by APNIC:

1.0.0.0/16	1.5.0.0/16	1.20.0.0/16
1.1.0.0/16	1.6.0.0/16	1.32.0.0/16
1.2.0.0/16	1.7.0.0/16	1.37.0.0/16
1.3.0.0/16	1.8.0.0/16	1.187.0.0/16
1.4.0.0/16	1.10.0.0/16	

 These /16s should be marked as allocated to APNIC R&D to allow further short term experimentation in the distribution of unsolicited background traffic to these addresses to be conducted by APNIC

Would eliminating hotspots help?

/24

The Broader View

- Pollution is not limited to 1/8. Evidence of similar types of pollution in 50/8, 107/8, 14/8, 223/8
- Hotspots can exist in strange and unusual places
- Pollution can come from strange and unusual sources (in addition to scanning and backscatter)
 - System Misconfiguration syslog, DNS
 - Programming errors htonl(), bit-torrent
 - Hardcoded defaults SIP, dsl modems
 - Experiments gone wild! iperf testing
- Need to develop a consistent methodology for identifying these hotspots and a policy on cleanup or quarantine

A Framework for Internet Pollution Analysis

- Work with RIRs to identify upcoming allocation
- Obtain LOA
- Advertise, Collect, Analyze, Archive, Provide to research community
- Cleanup/Quarantine recommendations

Conclusions (1)

- Unchecked Internet pollution has the potential to render portions of valuable address space unusable
- In some cases cleanup is actually possible if you can identify the source (IP, application, system, protocol, document)
- Internet pollution is only one aspect of usability of an address block
 - Reclaimed address space might be on blacklists such as SPAM and botnet lists
- Current approach is to return a polluted block and request an alternate allocation, but that might not be feasible for much longer

Conclusions (2)

- Who is responsible for the quality of the address block being allocated, does this have the potential to affect pricing should an address space market emerge
- We currently have collected data for 8
 x.0.0.0/8 net blocks 2 more in the next few
 weeks.
- Roughly 10TB of data collected will be made available to researchers/community via the DHS funded PREDICT data repository

Additional Reading

- Some additional details:
 - Tech Report:
 https://www.eecs.umich.edu/techreports/cse/
 2010/CSE-TR-564-10.pdf
 - http://www.potaroo.net/studies/14-223-slash8/14-223-slash8.html
 - http://software.merit.edu/darknet

Obligatory

[Source: http://xkcd.com/742/]